×

zbMATH — the first resource for mathematics

Solutions périodiques symétriques de l’équation de Duffing sans dissipation. (French) Zbl 0439.34033

MSC:
34C25 Periodic solutions to ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bogoliubov, N.N; Mitropolskii, Yu.A, Méthodes asymptotiques dans la théorie des oscillations non linéaires, (1962), Gauthier-Villars Paris
[2] Cartwright, M.L; Littlewood, J.E, On nonlinear differential equations of the second order, Ann. of math., 48, 472-494, (1947) · Zbl 0029.12602
[3] Duffing, G, Erzwungene schwingungen bei veränderlicher eigenfrequenz, (1918), F. Vieweg u. Sohn Braunschweig · JFM 46.1168.01
[4] Ehrmann, H; Ehrmann, H, Über existenzsätze für periodische Lösungen bei nichtlinearen schwingungsdifferentialgleichungen, Z. angew. math. mech., Z. angew. math. mech., 35, 326-327, (1955) · Zbl 0065.07401
[5] Ehrmann, H, Über die existenz der Lösungen von randwertaufgaben bei gewöhnlichen nichtlinearen differentialgleichungen zweiter ordnung, Math. ann., 134, 167-194, (1957) · Zbl 0078.07801
[6] Hale, J.K, Ordinary differential equations, (1969), Wiley-Interscience New York · Zbl 0186.40901
[7] Hale, J.K; Rodrigues, H.M, Bifurcations in the Duffing equation with independent parameters II, (), 317-326 · Zbl 0423.34055
[8] Harvey, C.A, Periodic solutions of the differential equation x″ + g(x) = p(t), Contributions to differential equations, 1, 425-451, (1963)
[9] Lefschetz, S, Differential equations: geometric theory, (1957), Wiley-Interscience New York · Zbl 0080.06401
[10] Loud, W.S, On periodic solutions of Duffing’s equation with damping, J. math. phys., 34, 173-178, (1955) · Zbl 0067.06702
[11] Loud, W.S, Nonsymmetric periodic solutions of certain second order nonlinear differential equations, J. differential equations, 5, 352-368, (1969) · Zbl 0169.42202
[12] Mazzanti, S, Familles de solutions périodiques symétriques d’un système différentiel à coefficients périodiques avec symétries, ()
[13] Minorski, N, Nonlinear oscillations, (1962), Van Nostrand Princeton
[14] Morris, G.R, A differential equation for undamped forced nonlinear oscillations I, (), 297-312 · Zbl 0065.07403
[15] Nelson, E, Internal set theory: A new approach to nonstandard analysis, Bull. amer. math. soc., 83, 1165-1198, (1977) · Zbl 0373.02040
[16] Schmitt, B.V, Détermination, à l’aide d’index, de solutions périodiques de l’équation de Duffing x″ + 2x3 = λ cos t, (), 330-334
[17] Schmitt, B.V, Bifurcation de certaines familles de solutions périodiques d’une équation de Duffing, (), 639-644 · Zbl 0572.34037
[18] Schmitt, B.V, Deux méthodes numériques simples dans le domaine des oscillations non linéaires, (), 145-149
[19] Schmitt, B.V; Brzezinski, R, Localisation numérique de solutions périodiques, () · Zbl 0433.34034
[20] Stoker, J.J, Nonlinear vibrations in mechanical and electrical systems, (1950), Wiley-Interscience New York · Zbl 0035.39603
[21] Turrittin, H.L; Culmer, W.J, A peculiar periodic solution of a modified Duffing’s equation, Ann. mat. pura appl., 44, 23-33, (1957), (4) · Zbl 0082.08502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.