Denker, Manfred; Keane, Michael Almost topological dynamical systems. (English) Zbl 0441.28008 Isr. J. Math. 34, 139-160 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 19 Documents MSC: 28D05 Measure-preserving transformations 54H20 Topological dynamics (MSC2010) 28D10 One-parameter continuous families of measure-preserving transformations Keywords:almost topological dynamical systems; measure theoretic dynamical system; full measure; finitary isomorphism; Meshalkin’s coding; Bernoulli shifts; entropy; shift dynamical system; central limit theorem; interpretation of physical measurements of classical dynamical systems Citations:Zbl 0405.28017 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] R. Adler and B. Marcus,Finitistic coding for shifts of finite type, NSF Regional Conference North Dakota State Univ., to appear in Lecture Notes in Math., Springer Verlag. [2] Adler, R.; Weiss, B., Entropy, a complete invariant for automorphisms of the torus, Proc. Nat. Acad. Sci. U.S.A., 57, 1573-1576 (1967) · Zbl 0177.08002 · doi:10.1073/pnas.57.6.1573 [3] M. A. Akcoglu, A. del Junco and M. Rahe,Finitary codes between Markov processes, submitted to Z. Wahrscheinlichkeitstheorie und Verw. Gebiete. · Zbl 0403.28017 [4] Blum, J.; Hanson, D., On the isomorphism problem for Bernoulli schemes, Bull. Amer. Math. Soc., 69, 221-223 (1963) · Zbl 0121.13601 [5] Böge, W.; Krickeberg, K.; Papangelou, F., Über die dem Lebesgueschen Maß isomorphen topologischen Maßräume, Manuscripta Math., 1, 59-77 (1969) · Zbl 0164.06101 · doi:10.1007/BF01171134 [6] Boldrighini, C.; Keane, M.; Marchetti, F., Billiards in polygons, Ann. Probability, 6, 532-540 (1978) · Zbl 0377.28014 [7] Bowen, R., Markov partitions for axiom A diffeomorphisms, Amer. J. Math., 92, 725-747 (1970) · Zbl 0208.25901 · doi:10.2307/2373370 [8] Bowen, R., Smooth partitions of Anosov diffeomorphisms are weak Bernoulli, Israel J. Math., 21, 95-100 (1975) · Zbl 0315.58020 · doi:10.1007/BF02760788 [9] M. Denker, C. Grillenberger and K. Sigmund,Ergodic theory on compact spaces, Lecture Notes in Math.527, Springer Verlag, 1976. · Zbl 0328.28008 [10] Denker, M., Generators and almost topological isomorphisms, Astérisque, 49, 23-36 (1977) · Zbl 0384.28013 [11] M. Denker,Almost topological representation theorems for dynamical systems, to appear in Monatsh. Math. (1979). · Zbl 0405.54033 [12] Gordin, M. I., The central limit theorem for stationary processes, Dokl. Akad. Nauk SSSR, 10, 5, 1174-1176 (1969) · Zbl 0212.50005 [13] W. H. Gottschalk and G. Hedlund,Topological Dynamics, Amer. Math. Soc. Coll. Publ.36. · Zbl 0067.15204 [14] Grillenberger, C.; Krengel, U., On marginal distributions and isomorphisms of stationary processes, Math. Z., 149, 131-154 (1976) · Zbl 0313.60029 · doi:10.1007/BF01301571 [15] Ibragimov, I. A.; Linnik, Yu. V., Independent and Stationary Sequences of Random Variables (1971), Groningen: Wolters-Noordhoff Publishing, Groningen · Zbl 0219.60027 [16] Jewett, R. I., The prevalence of uniquely ergodic systems, J. Math. Mech., 19, 717-729 (1970) · Zbl 0192.40601 [17] M. Keane,Bernoulli-Schemata und Isomorphie, Diplomarbeit Universität, Göttingen, 1965. [18] M. Keane,Coding problems in ergodic theory, Proc. Int. Conf. on Math. Physics 1974, Camerino, Italy. [19] Keane, M., Interval exchange transformations, Math. Z., 141, 25-31 (1975) · Zbl 0278.28010 · doi:10.1007/BF01236981 [20] Keane, M.; Smorodinsky, M., A class of finitary codes, Israel J. Math., 26, 352-371 (1977) · Zbl 0357.94012 · doi:10.1007/BF03007652 [21] K. Krickeberg,Strong mixing properties of Markov chains with infinite invariant measure, Proc. Fifth Berkeley Symp. Math. Stat. and Probability 1965, Vol. II, Part 2, Univ. of California Press, 1967, pp. 431-446. · Zbl 0211.48503 [22] Krieger, W., On entropy and generators of measure preserving transformations, Trans. Amer. Math. Soc., 149, 453-464 (1970) · Zbl 0204.07904 · doi:10.2307/1995407 [23] Krieger, W., On unique ergodicity, 327-346 (1972), Berkeley: Univ. of California Press, Berkeley · Zbl 0262.28013 [24] Lind, D.; Thouvenot, J.-P., Measure-preserving homeomorphisms of the torus represent all finite entropy ergodic transformations, Math. Systems Theory, 11, 275-282 (1977) · Zbl 0377.28011 · doi:10.1007/BF01768481 [25] Meshalkin, L., A case of isomorphy of Bernoulli schemes, Dokl. Akad. Nauk SSSR, 128, 41-44 (1959) · Zbl 0099.12301 [26] J. C. Oxtoby,Maß und Kategorie, Springer Verlag, 1971. · Zbl 0217.09202 [27] W. Parry,A finitary classification of topological Markov chains and sofic systems, preprint. · Zbl 0352.60054 [28] P. Walters,Ergodic Theory—Introductory Lectures, Lecture Notes in Math.458, Springer Verlag, 1975. · Zbl 0299.28012 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.