×

zbMATH — the first resource for mathematics

Generalized potlatch and smoothing processes. (English) Zbl 0441.60096

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Harris, T.E.: Contact Interactions on a Lattice. Annals of Probbab. 2, 969-988 (1974) · Zbl 0334.60052 · doi:10.1214/aop/1176996493
[2] Harris, T.E.: Additive Set-valued Markov Processes and Graphical Methods. Annals of Probab. 6, 355-378 (1978) · Zbl 0378.60106 · doi:10.1214/aop/1176995523
[3] Holley, R., Liggett, T.M.: The Surivival of Contact Processes. Annals of Probab. 6, 198-206 (1978) · Zbl 0375.60111 · doi:10.1214/aop/1176995567
[4] Liggett, T.M.: The Stochastic Evolution of Infinite Systems of Interacting Particles. Lecture Notes in Mathematics 598, 187-248. Berlin-Heidelberg-New York: Springer 1977 · Zbl 0363.60109
[5] Liggett, T.M., Spitzer, F.: Ergodic Theorems for Coupled Random Walks and Other Systems with Locally Interacting Components. To appear · Zbl 0444.60096
[6] Onsager, L.: Crystal Statistics I, A Two-Dimensional Model with an Order-Disorder Transition. Phys. Rev. 65, 117-149 (1944) · Zbl 0060.46001 · doi:10.1103/PhysRev.65.117
[7] Spitzer, F.: Stochastic Time Evolution of One Dimensional Infinite Particle Systems. Bull Amer. Math. Soc. 83, 880-890 (1977) · Zbl 0372.60149 · doi:10.1090/S0002-9904-1977-14322-X
[8] Spitzer, F.: Infinite Systems with Locally Interacting Components. To appear · Zbl 0462.60096
[9] Kahane, J.P., Peyriere, J.: Sur Certaines Martingales de Benoit Mandelbrot. Advances in Math. 22, 131-145 (1976) · Zbl 0349.60051 · doi:10.1016/0001-8708(76)90151-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.