×

zbMATH — the first resource for mathematics

Systemes de deduction pour les arbres et les schemas de programmes. (French) Zbl 0441.68007

MSC:
68Q60 Specification and verification (program logics, model checking, etc.)
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] 1. J. ARSACLa construction de programmes structurés, Dunod, Paris, 1977. Zbl0451.68014 · Zbl 0451.68014
[2] 2. M. A. ARBIB et S. ALAGIC, Proof Rules for < Gotos > , Acta Informatica, vol. 11, 1979, p. 139-148.
[3] 3. L. BANAKOWSKI, A. KRECZMAR, G. MIRKOWSKA, H. RASIOWA et A. SALWICKI, An Introduction to Algorithmic Logic. Mathematical Investigations in the Theory of Programs, in Banach Center Publications V. 2 Mathematical Foundations of Computer Science, P. W. N. Polish Scientific Publishers, 1977, Warsaw, p. 7-99. Zbl0358.68035 · Zbl 0358.68035
[4] 4. J. W. DE BAKKER, Recursive Programs as Predicate Transformers, in Formal descriptions of programing concepts, E. J. NEUHOLD, éd., North-Holland, 1978, p. 165-202. Zbl0392.68006 MR537905 · Zbl 0392.68006
[5] 5. CHANG KEISLER, Model Theory, N.-H. Amsterdam. Zbl0697.03022 · Zbl 0697.03022
[6] 6. S. A. COOK, Soundness and Completeness for an Axiom System for Program Verification, J.S.I.A.M. on Computing, vol. 7, 1978, p. 70-90. Zbl0374.68009 MR495086 · Zbl 0374.68009
[7] 7. M. CLINT et C. A. R. HOARE, Program Proving: Jumps and Functions, Acta Informatica, vol. 1, 1972, p. 214-224. Zbl0229.68003 · Zbl 0229.68003
[8] 8. B. COURCELLE et M. NIVAT, The algebraic Semantics of Recursive Program Schemes, in Proc. 7th Math. Found of Comput. Sc. Symposium, 1978, Lecture Notes in Comput. Sc., vol. 62, p. 16-30. Zbl0384.68016 MR519827 · Zbl 0384.68016
[9] 9. G. COUSINEAULes arbres à feuilles indicées : un cadre algébrique de définition des structures de contrôle, Thèse d’État, Paris, 1977.
[10] 10. G. COUSINEAU, An algebraic definition of control structures, L.I.T.P. Report, 78-27 (à paraître dans Theor. Comp. Sci.). Zbl0456.68015 · Zbl 0456.68015
[11] 11. G. COUSINEAU, La programmation en EXEL, 1re partie; Revue Technique THOMSON-CSF, vol. 10, n^\circ 2, 1978, p. 209-234.
[12] 12. G. COUSINEAU, La Programmation en EXEL, 2e partie, Revue Technique THOMSON-CSF, vol. 11, n^\circ 1, 1979, p. 13-35.
[13] 13. G. COUSINEAU et P. ENJALBERT, Program Equivalence and Provability, in Proc. 8th Math. Found. of Comput. Sc. Symposium, 1979, Lecture Notes in Comput. Sc., n^\circ 74, p. 237-245. Zbl0404.68014 · Zbl 0404.68014
[14] 14. E. W. DIJSKRA, Guarded Commands, Non Determinacy and Formal Derivations of Programs, Corn. Assoc. comput. Math., vol. 18, n^\circ 8, 1975, p. 453-457. Zbl0308.68017 MR383808 · Zbl 0308.68017
[15] 15. DONER, Tree Acceptors and Some of their Applications, J. Comput. System Sci., vol. 4, 1970, p. 406-451. Zbl0212.02901 MR287977 · Zbl 0212.02901
[16] 16. D. HAREL, Dynamic Logic, Springer Lecture Notes in Comput. Sc., vol. 68, 1979. Zbl0403.03024 MR567695 · Zbl 0403.03024
[17] 17. D. HAREL, A. MEYER et V. R. PRATT, Computability and Completeness in Logics of Programs, Proc. 9th Annual A.C.M. Symposium on Theory of Computing, 1977, p. 261-268. MR495101
[18] 18. C. A. R. HOARE, An Axiomatic Basis for Computer Programing, Com. Assoc. Comput. Math., vol. 12, 1969, p. 576-580. Zbl0179.23105 · Zbl 0179.23105
[19] 19. C. A. R. HOARE et P. E. LAUER, Consistent and Complementary Formal Theories of the Semantics of Programming Languages, Acta Informatica, vol. 3, 1974, p. 135-153. Zbl0264.68006 MR464644 · Zbl 0264.68006
[20] 20. S. IGARASHI, R. L. LONDON et D. C. LUCKMAN, Automatic Verification I..., Acta Informatica, vol. 4, 1975, p. 149-181.
[21] 21. M. NIVAT, Chartes, arbres, Programmes itératifs, I.R.I.A.-S.E.S.O.R.I., Journées d’étude : Synthèse, Manipulation et transformation des programmes, 1978, p. 165-187.
[22] 22. L. NOLIN et G. RUGGIU, A Formalization of EXEL, Assoc. Comput. Math. SIGACT-SIGPLAN Symposium on the Principle of Programming Languages, Boston, 1973. Zbl0308.68011 · Zbl 0308.68011
[23] 23. R. PARIKH, Second Order Process Logic, 19th I.E.E.E. Symposium on Found. of Computer Science, 1978. · Zbl 0392.03017
[24] 24. V. R. PRATT, Semantical Consideration on Floyd-Hoare Logic, 17th I.E.E.E. Symposium on Foundation of Computer Science, 1976, p. 109-121. MR502164
[25] 25. G. RUGGIU, De l’organigramme à la formule, Thèse d’État, Paris, 1973. · Zbl 0279.02014
[26] 26. M. WAND, A new Incompleteness Result for Hoare’s System, J. Assoc. Comput Mach., vol. 25, 1978, p. 168-175. Zbl0364.68008 MR474964 · Zbl 0364.68008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.