×

On n-extendable graphs. (English) Zbl 0442.05060


MSC:

05C99 Graph theory
05C40 Connectivity
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Dirac, G., Some theorems on abstract graphs, Proc. London math. soc., 2, 69-81, (1952) · Zbl 0047.17001
[2] Dirac, G., Généralisations du thèorém de Menger, C.R. acad. sci. Paris, 250, 4252-4253, (1960) · Zbl 0095.37803
[3] Hall, P., On representatives of subsets, J. London math. soc., 10, 26-30, (1935) · Zbl 0010.34503
[4] Harary, F., Graph theory, (1969), Addison-Wesley Reading, MA · Zbl 0797.05064
[5] Little, C., A theorem on connected graphs in which every edge belongs to a 1-factor, J. Australian math. soc., 18, 450-452, (1974) · Zbl 0289.05125
[6] Lovász, L., On the structure of factorizable graphs, Acta math. acad. sci. hung., 23, 179-195, (1972) · Zbl 0247.05156
[7] Lovász, L., Factors of graphs, (), 13-22
[8] Lovász, L.; Plummer, M., On bictrical graphs, Coll. math. soc. J. bolyai, 10, 1051-1079, (1975), Budapest
[9] Lovász, L.; Plummer, M., On minimal elementary bipartite graphs, J. combinatorial theory, B, 127-138, (1977) · Zbl 0375.05036
[10] Lovász, L.; Plummer, M., On a family of planar bicritical graphs, Proc. London math. soc., 160-176, (1975) · Zbl 0299.05101
[11] Tutte, W., The factorization of linear graphs, J. London math soc., 22, 107-111, (1947) · Zbl 0029.23301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.