×

zbMATH — the first resource for mathematics

A division theorem for analytic functions with a given majorant and some of its applications. (English) Zbl 0442.30050

MSC:
30H05 Spaces of bounded analytic functions of one complex variable
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. L. Cartwright, ”On analytic functions regular in the unit circle. I–II,” Q. J. Math. Oxford Ser.,4, 246–257 (1933);6, 94–105 (1935). · Zbl 0008.11803
[2] C. N. Linden, ”Functions regular in the unit circle,” Proc. Cambridge Phil. Soc.,52, No. 1, 49–60 (1956). · Zbl 0070.07202 · doi:10.1017/S0305004100030978
[3] C. N. Linden, ”The representation of regular functions,” J. London Math. Soc.,39, No. 153, 19–30 (1964). · Zbl 0124.29003 · doi:10.1112/jlms/s1-39.1.19
[4] V. I. Matsaev, ”On a method of estimating the resolvent of non-self-adjoint operators,” Dokl. Akad. Nauk SSSR,154, No. 5, 1034–1037 (1964).
[5] N. K. Nikol’skii, ”Selected problems in weighted approximations and spectral analysis,” Tr. Mat. Inst. im. V. A. Steklova,120, Nauka, Leningrad (1974).
[6] M. M. Dzhrbashyan, ”The theory of the factorization of functions meromorphic in the circle,” Mat. Sb.,79 (121), 517–615 (1969).
[7] A. A. Gol’dberg and I. V. Ostrovskii, The Distribution of the Values of Meromorphic Functions [in Russian], Moscow (1970).
[8] S. O. Varshavskii, ”On the conformal mapping of infinite strips,” Matematika – Period. Sb. Perevodov Inostran. Statei,2, No. 4, 66–116 (1958).
[9] V. I. Matsaev, ”Factorizations in certain classes of functions,” Tezisy Dokladov Vsesoyuzn. Konf. po TFKP, Kharkov (1971), pp. 138–139.
[10] G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Providence (1969). · Zbl 0183.07502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.