×

zbMATH — the first resource for mathematics

Fourier coefficients of continuous linear mappings on homogeneous Banach spaces. (English) Zbl 0442.47022
MSC:
47B38 Linear operators on function spaces (general)
42A99 Harmonic analysis in one variable
47B06 Riesz operators; eigenvalue distributions; approximation numbers, \(s\)-numbers, Kolmogorov numbers, entropy numbers, etc. of operators
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] BARTLE R. G., DUNFORD N., SCHWARTZ J. T.: Weak compactness and vector measures. Canad. J. Math., 7, 1955, 289-305. · Zbl 0068.09301
[2] BOURBAKI N.: Topologie générale. chap. 1 and 2, 3 Paris 1961. · Zbl 0139.15904
[3] DEBIÈVE C.: Intégration par rapport à une mesure vectorielle. Annales Société Scient. Bruxelles, 87, 1973, 165-185. · Zbl 0268.28004
[4] DUNFORD N., SCHWARTZ J. T.: Linear operators I. Interscience New York 1958. · Zbl 0084.10402
[5] EDWARDS R. E.: Functional analysis. New York 1965. · Zbl 0182.16101
[6] KATZNELSON Y.: An introduction to harmonic analysis. John Wiley and Sons, Inc, New York 1968. · Zbl 0169.17902
[7] KLUVÁNEK I.: Fourier transforms of vector-valued functions and measures. Studia Math., 27, 1970, 1-12. · Zbl 0225.43005
[8] KÖTHE G.: Topologische lineare Räume I. 2e, Springer-Verlag Berlin 1966. · Zbl 0137.31301
[9] LEWIS D. R.: Integration with respect to vector measures. Pacific J. Mathematics, 33, 1970, 157-165. · Zbl 0195.14303
[10] McKEE S. K.: Orthogonal expansion of vector-valued functions and measures. Mat. Čas., 22, 1972, 71-80. · Zbl 0229.42018
[11] PHILLIPS R. S.: On Fourier-Stieltjes integrals. TAMS 69, 1950, 312-323. · Zbl 0039.33101
[12] УЛАНОВ М. П.: Вєкторозначныє функции множєства и прєдставлєниє нєпрєрывных линєйных отображєний. Сиб. мат. журнал, 9, 1968, 410-425.
[13] SCHAEFER H. H.: Topological vector spaces. Springer-Verlag Berlin 1971. · Zbl 0212.14001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.