Janovsky, Vladimir; Prochazka, Petr Contact problem of two elastic bodies. I. (English) Zbl 0442.73115 Apl. Mat. 25, 87-109 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 Reviews MSC: 74A55 Theories of friction (tribology) 74M15 Contact in solid mechanics Keywords:two-dimensional version of tunnel wall; isotropic elastic bodies; infinitesimal displacement; continuous; uniqueness; existence PDF BibTeX XML Cite \textit{V. Janovsky} and \textit{P. Prochazka}, Apl. Mat. 25, 87--109 (1980; Zbl 0442.73115) Full Text: EuDML References: [1] G. Duvaut J. L. Lions: Inequalities in Mechanics and Physics. Springer Verlag, Berlin 1976. · Zbl 0331.35002 [2] M. Fremond: Dual formulation for potentials and complementary energies. Unilateral boundary conditions. Applications to the finite element method. The Mathematics of Finite Elements and Applications, J. R. Whiteman (editor). Academia Press, London 1973. [3] I. Hlaváček J. Nečas: On inequalities of Korn’s type II. Arch. Rat. Mech. Anal., 36, 312 - 334, 1970. · Zbl 0193.39002 [4] V. Janovský: Contact problem of two elastic bodies. Technical Report BICOM 77-2, Institute of Computational Math., Brunel University, Uxbridge, England. [5] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Mason, Paris, 1967. · Zbl 1225.35003 [6] M. Cotlar R. Cignoli: An Introduction to Functional Analysis. North-Holland Publishing Co., Amsterdam, 1974. · Zbl 0277.46001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.