Janovsky, Vladimir; Prochazka, Petr Contact problem of two elastic bodies. II. (English) Zbl 0442.73116 Apl. Mat. 25, 110-136 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page MSC: 74A55 Theories of friction (tribology) 74M15 Contact in solid mechanics 74S05 Finite element methods applied to problems in solid mechanics Keywords:two elastic bodies; convergence; continuous model; tunnel problem Citations:Zbl 0442.73115 PDF BibTeX XML Cite \textit{V. Janovsky} and \textit{P. Prochazka}, Apl. Mat. 25, 110--136 (1980; Zbl 0442.73116) Full Text: EuDML References: [1] J. H. Bramble S. Hilbert: Bounds for a class of linear functional with applications to Hermite interpolation. Numer. Math., 16, 1971, 362-369. · Zbl 0214.41405 [2] P. K. Ciarlet P. A. Raviart: General Lagrange and Hermite interpolation in \(R_m\) with application to finite element methods. Arch. Rat. Mech. Anal. 46, 1972, 172 - 199. · Zbl 0243.41004 [3] V. Janovský: Contact problem of two elastic bodies. Technical Report BICOM 77-2, Institute of Computational Math., Brunel Univ., England. [4] V. Janovský P. Procházka: Contact problem of two elastic bodies-Part I. Aplikace matematiky 25 (1980), 87-109. [5] A. Kufner O. John S. Fučík: Function Spaces. Academia, Prague 1977. [6] J. Nečas: Les Méthodes directes en théorie des équations elliptiques. Mason, Paris, 1967. · Zbl 1225.35003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.