zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Decomposition of regular matroids. (English) Zbl 0443.05027

MSC:
05B35Matroids, geometric lattices (combinatorics)
WorldCat.org
Full Text: DOI
References:
[1] Bixby, R. E.: Kuratowski’s and wagner’s theorems for matroids. J. combinatorial theory ser. B 22, 31-53 (1977) · Zbl 0344.05015
[2] Bixby, R. E.; Cunningham, W. H.: Matroids, graphs, and 3-connectivity. Graph theory and related topics, 91-103 (1979) · Zbl 0459.05028
[3] Brylawski, T.: A combinatorial model for series-parallel networks. Trans. amer. Math. soc. 154, 1-22 (1971) · Zbl 0215.33702
[4] Brylawski, T.: Modular constructions for combinatorial geometries. Trans. amer. Math. soc. 203, 1-44 (1975) · Zbl 0299.05023
[5] Cunningham, W. H.: A combinatorial decomposition theory. Thesis (Research report CORR 74-13) (1973)
[6] W. H. Cunningham, On matroid connectivity, to appear.
[7] A. K. Kelmans, A theory of 3-connected graphs, in ”Proceedings, Trudi Colloquium on Algebraic Methods in Graph Theory,” Szeged, Hungary, in press.
[8] P. D. Seymour, Matroids and multicommodity flows, European J. Combinatorics, in press. · Zbl 0479.05023
[9] P. D. Seymour, On Tutte’s characterization of graphic matroids, in ”Combinatorics 1979,” Annals of Discrete Mathematics, North-Holland, Amsterdam, in press. · Zbl 0445.05038
[10] P. D. Seymour, On Tutte’s extension of the four-colour problem, J. Combinatorial Theory Ser. B, in press. · Zbl 0471.05031
[11] Tutte, W. T.: A homotopy theorem for matroids, I, II. Trans. amer. Math. soc. 88, 144-174 (1958) · Zbl 0081.17301
[12] Tutte, W. T.: Connectivity in graphs. (1966) · Zbl 0146.45603
[13] Tutte, W. T.: Connectivity in matroids. Canad. J. Math. 18, 1301-1324 (1966) · Zbl 0149.21501
[14] Tutte, W. T.: Matroids and graphs. Trans. amer. Math. soc. 90, 527-552 (1959) · Zbl 0084.39504
[15] Wagner, K.: Beweis einer abschwächung der hadwiger-vermutung. Math. ann. 153, 139-141 (1964) · Zbl 0192.30002
[16] Welsh, D. J. A: Matroid theory. (1976)