×

zbMATH — the first resource for mathematics

Conducteur des représentations du groupe linéaire. (French) Zbl 0443.22013

MSC:
22E50 Representations of Lie and linear algebraic groups over local fields
11F70 Representation-theoretic methods; automorphic representations over local and global fields
11F27 Theta series; Weil representation; theta correspondences
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] [B-Z] Bernstein, I.N., Zelevensky, A.V.: Induced representations of reductivep-adic groups. I. Ann. Sci. École Norm. Sup.4, 441-472 (1977)
[2] [C] Casselman, W.: On some results of Atkin and Lehner. Math. Ann.206, 311-318 (1973). · Zbl 0253.20062 · doi:10.1007/BF01355984
[3] [D] Deligne, P.: Formes modulaires et représentations de GL(2). In: Modular functions of one variable. II. Lecture Notes in Mathematics, Vol. 349. Berlin, Heidelberg, New York Springer 1973
[4] [G-J] Godement, R., Jacquet, H.: Zeta functions of simple algebras. In: Lecture Notes in Mathematics, Vol. 260. Berlin, Heidelberg, New York: Springer 1972 · Zbl 0244.12011
[5] [G-K] Gelfand, I.M., Kazdan, D.A.: Representations of GL(n, K) whereK is a local field. In: Lie groups and their representations, pp. 95-118. New York: Wiley 1975
[6] [J1] Jacquet, H.: Generic representations. In: Non commutative harmonic analysis. Marseille-Luminy 1976. In: Lecture Notes in Mathematics, Vol. 587, pp. 91-100. Berlin, Heidelberg, New York: Springer 1976
[7] [J2] Jacquet, H.: PrincipalL-functions of the linear group. In: automorphic forms, representations, andL-functions, Part 2. Am. Math. Soc. 63-95 (1979)
[8] [J-P-S1] Jacquet, H., Piatetski-Shapiro, I.I., Shalika, J.: Automorphic forms on GL(3). I. Ann. of Math.109, 169-212 (1979) · Zbl 0401.10037 · doi:10.2307/1971270
[9] [J-P-S2] Jacquet, H., Piatetski-Shapiro, I.I., Shalika, J.: FacteursL et ? du groupe linéaire. C. R. Acad. Sci. Ser. A289, 59-61 (1979) · Zbl 0448.10022
[10] [N] Novodvorsky, M.: On certain stationary groups in infinite dimensional representations of Chevalley groups. Funkcional. Anal. i. Prilozen5, 87-88 (1971). Transl. Functional Anal. Appl.5, 74-76 (1971)
[11] [R] Rodier, F.: Whittaker models for admissible representations of real algebraic groups. In: Harmonic analysis on homogeneous spaces. Proc. Symp. Pure Math. Am. Math. Soc. 425-430 (1976)
[12] [S] Shintani, T.: On an explicit formula for class-1 ?Whittaker functions? on GL n overp-adic fields, Proc. Japan Acad.52, 180-182 (1976) · Zbl 0387.43002 · doi:10.3792/pja/1195518347
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.