×

zbMATH — the first resource for mathematics

Intersection numbers of sections of elliptic surfaces. (English) Zbl 0444.14004

MSC:
14C17 Intersection theory, characteristic classes, intersection multiplicities in algebraic geometry
14G05 Rational points
14H52 Elliptic curves
14H45 Special algebraic curves and curves of low genus
14J25 Special surfaces
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Clemens, C.H.: Degeneration of Kähler manifolds. Duke Math. J.44, 215-290 (1977) · Zbl 0353.14005 · doi:10.1215/S0012-7094-77-04410-6
[2] Deligne, P.: Equations differentielles à points singuliers réguliers. In: Lecture Notes in Math. 163. Berlin-Heidelberg-New York: Springer 1970 · Zbl 0244.14004
[3] Eichler, M.: Eine Verallgemeinerung der Abelschen Integrale. Math. Zeitschr.67, 267-298 (1957) · Zbl 0080.06003 · doi:10.1007/BF01258863
[4] Hoyt, W.: Parabolic cohomology and cusp forms of the second kind for extensions of the field of modular functions. Preprint 1978
[5] Hoyt, W., Schwartz, C.: Period relations for the Weierstrass equationy 2=4x 33ux?u. In preparation (1979)
[6] Iitaka, S.: Deformations of compact complex surfaces. In: Global analysis, papers in honor of K. Kodaira. Princeton: Princeton University Press 1969 · Zbl 0188.53305
[7] Kas, A.: On the deformation types of regular elliptic surfaces. Preprint 1976 · Zbl 0351.14017
[8] Kodaira, K.: On compact analytic surfaces, II?III. Annals of Math.77, 563-626;78, 1-40 (1963) · Zbl 0118.15802 · doi:10.2307/1970131
[9] Kodaira, K.: On homotopyK?3 surfaces. In: Essays on topology and related topics, Mémoires dédiés à George deRham. Berlin-Heidelberg-New York: Springer 1970
[10] Kodaira, K.: On the structure of compact analytic surfaces, I. Amer. J. Math.87, 751-798 (1964) · Zbl 0137.17501 · doi:10.2307/2373157
[11] Mandelbaum, R.: On the topology of elliptic surfaces. Preprint 1977 · Zbl 0365.57010
[12] Mandelbaum, R.: On the topology of non-simply connected elliptic surfaces with degenerate fibers. Manuscript 1978
[13] Manin, Ju.I.: The Tate height of points on an abelian variety; its variants and applications. Amer. Math. Soc. Transl. (Series 2)59, 82-110 (1966) · Zbl 0192.26801
[14] Néron, A.: Modèles minimaux des variétés abéliennes sur les corps locaux et globaux. Pub. Math. I.H.E.S.21, (1964)
[15] Néron, A.: Quasi-fonctions et hauteurs sur les variétés abéliennes. Annals of Math.82, 249-331 (1965) · Zbl 0163.15205 · doi:10.2307/1970644
[16] Ogg, A.: Cohomology of abelian varieties over function fields.Annals of Math.76, 185-212 (1962) · Zbl 0121.38002 · doi:10.2307/1970272
[17] Schwartz, C.: Independent solutions of certain Weierstrass equations. Manuscript 1977
[18] Schwartz, C.: On generators of the group of rational solutions of a certain Weierstrass equation. Trans. A.M.S., to appear
[19] Shafarevitch, I.: Principal homogeneous spaces defined over a function field. Amer. Math. Soc. Transl. (Series 2)37, 85-114 (1964) · Zbl 0142.18401
[20] Shafarevitch, I., and others: Algebraic Surfaces. Moscow: Proc. Steklov Institute 1965; English Translation, Providence: A.M.S. 1967
[21] Shimura, G.: Introduction to the arithmetic theory of automorphic forms. Princeton: Princeton University Press, 1971 · Zbl 0221.10029
[22] Shimura, G.: Sur les intégrales attachées aux formes automorphes. J. Math. Soc. Japan11, 291-311 (1959) · Zbl 0090.05503 · doi:10.2969/jmsj/01140291
[23] Shioda, T.: On elliptic modular surfaces. J. Math. Soc. Japan24, 20-59 (1972) · Zbl 0226.14013 · doi:10.2969/jmsj/02410020
[24] Zucker, S.: Generalized intermediate Jacobians and the theorem on normal functions. Inventiones Math.33, 185-222 (1976) · Zbl 0329.14008 · doi:10.1007/BF01404203
[25] Zucker, S.: Hodge theory with degenerating coefficients:L 2 cohomology in the Poincaré metric, Annals of Math. (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.