×

zbMATH — the first resource for mathematics

Complex manifolds and mathematical physics. (English) Zbl 0444.32014

MSC:
32L10 Sheaves and cohomology of sections of holomorphic vector bundles, general results
81V99 Applications of quantum theory to specific physical systems
32C35 Analytic sheaves and cohomology groups
70G99 General models, approaches, and methods in mechanics of particles and systems
78A99 General topics in optics and electromagnetic theory
83E99 Unified, higher-dimensional and super field theories
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aldo Andreotti and François Norguet, Problème de Levi et convexité holomorphe pour les classes de cohomologie, Ann. Scuola Norm. Sup. Pisa (3) 20 (1966), 197 – 241 (French). · Zbl 0154.33504
[2] M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Deformations of instantons, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 7, 2662 – 2663. · Zbl 0356.58011
[3] M. F. Atiyah and R. S. Ward, Instantons and algebraic geometry, Comm. Math. Phys. 55 (1977), no. 2, 117 – 124. · Zbl 0362.14004
[4] W. Barth, Some properties of stable rank-2 vector bundles on \?_{\?}, Math. Ann. 226 (1977), no. 2, 125 – 150. · Zbl 0332.32021
[5] S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219 – 271. · Zbl 0302.32015
[6] G. deRham, Variétés differentiables, Hermann, Paris, 1960.
[7] Roger Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1973 (French). Troisième édition revue et corrigée; Publications de l’Institut de Mathématique de l’Université de Strasbourg, XIII; Actualités Scientifiques et Industrielles, No. 1252. · Zbl 0080.16201
[8] Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. · Zbl 0141.08601
[9] R. O. Hansen and Ezra T. Newman, A complex Minkowski space approach to twistors, General Relativity and Gravitation 6 (1975), no. 4, 361 – 385. · Zbl 0357.53012
[10] F. Reese Harvey and H. Blaine Lawson Jr., On boundaries of complex analytic varieties. II, Ann. of Math. (2) 106 (1977), no. 2, 213 – 238. · Zbl 0361.32010
[11] F. Hirzebruch, Topological methods in algebraic geometry, Third enlarged edition. New appendix and translation from the second German edition by R. L. E. Schwarzenberger, with an additional section by A. Borel. Die Grundlehren der Mathematischen Wissenschaften, Band 131, Springer-Verlag New York, Inc., New York, 1966. · Zbl 0138.42001
[12] L. Hughston, Twistor description of low-lying baryon states, Twistor Newsletter No. 1, pp. 1-6, March 1976, Oxford.
[13] N. H. Kuiper, On conformally-flat spaces in the large, Ann. of Math. (2) 50 (1949), 916 – 924. · Zbl 0041.09303
[14] D. Lerner, The non-analytic version of Kerr’s theorem, Twistor Newsletter No. 4, April 1977, Oxford.
[15] D. Lerner, The inverse twistor function for positive frequency fields, Twistor Newsletter No. 5, July 1977, Oxford.
[16] James Morrow and Kunihiko Kodaira, Complex manifolds, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1971. · Zbl 0325.32001
[17] R. Penrose, Twistor algebra, J. Mathematical Phys. 8 (1967), 345 – 366. · Zbl 0163.22602
[18] R. Penrose, The structure of space-time, Batelle Rencontres 1967, , Benjamin, New York, 1968.
[19] R. Penrose, Twistor quantisation and curved space-time, Inter. J. Theoret. Phys. 1 (1968), 61-99.
[20] R. Penrose, Solutions of the zero-rest-mass equations, J. Math. Phys. 10 (1969), 38-39.
[21] R. Penrose, Twistor theory, its aims and achievements, Quantum Gravity: An Oxford Symposium , Clarendon Press, Oxford, 1975.
[22] Roger Penrose, Nonlinear gravitons and curved twistor theory, General Relativity and Gravitation 7 (1976), no. 1, 31 – 52. The riddle of gravitation – on the occasion of the 60th birthday of Peter G. Bergmann (Proc. Conf., Syracuse Univ., Syracuse, N. Y., 1975). · Zbl 0354.53025
[23] Roger Penrose, The twistor programme, Rep. Mathematical Phys. 12 (1977), no. 1, 65 – 76.
[24] R. Penrose, Massless fields and sheaf cohomology, Twistor Newsletter No. 5, July 1977, Oxford.
[25] R. Penrose and M. A. H. MacCallum, Twistor theory: an approach to the quantisation of fields and space-time, Phys. Rep. 6C (1973), no. 4, 241 – 315.
[26] Ivor Robinson, Null electromagnetic fields, J. Mathematical Phys. 2 (1961), 290 – 291.
[27] Noboru Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of \? complex variables, J. Math. Soc. Japan 14 (1962), 397 – 429. · Zbl 0113.06303
[28] A. Trautman, F. A. E. Pirani and H. Bondi, Lectures on general relativity, Brandeis Summer Institute in Theoretical Physics, 1964, vol. 1, Prentice-Hall, Englewood Cliffs, N. J., 1965. · Zbl 0176.55402
[29] R. Ward, The twisted photon, Twistor Newsletter No. 1, March 1976, Oxford.
[30] R. Ward, Curved twistor space, thesis, D. Phil., Oxford, 1977.
[31] R. S. Ward, On self-dual gauge fields, Phys. Lett. A 61 (1977), no. 2, 81 – 82. · Zbl 0964.81519
[32] Дифференциал\(^{\приме}\)ное исчисление на комплексных многообразиях., Издат. ”Мир”, Мосцощ, 1976 (Руссиан). Транслатед фром тхе Енглиш бы Е. М. Čирка; Едитед бы Б. С. Митјагин.
[33] R. O. Wells Jr. and Joseph A. Wolf, Poincaré series and automorphic cohomology on flag domains, Ann. of Math. (2) 105 (1977), no. 3, 397 – 448. · Zbl 0448.32015
[34] Joseph A. Wolf, The action of a real semisimple group on a complex flag manifold. I. Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc. 75 (1969), 1121 – 1237. · Zbl 0183.50901
[35] N. Woodhouse, Twistor cohomology without sheaves, Twistor Newsletter No. 2, June 1976, Oxford.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.