×

zbMATH — the first resource for mathematics

Waiting time paradox and size biased sampling. (English) Zbl 0444.62017

MSC:
62E10 Characterization and structure theory of statistical distributions
60E05 Probability distributions: general theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1080/03610927808827669 · Zbl 0386.62013 · doi:10.1080/03610927808827669
[2] DOI: 10.1080/00401706.1967.10490456 · doi:10.1080/00401706.1967.10490456
[3] Feller W., An Introduction to Probability Theory and Its Applicationss 2 (1971)
[4] Gupta R. C., Sankhya 36 pp 288– (1974)
[5] DOI: 10.1080/03610927508827285 · Zbl 0307.62009 · doi:10.1080/03610927508827285
[6] Gupta R. C., Zeitschrift Mathematische Operations forschung und Statistik 8 (4) pp 523– (1977)
[7] DOI: 10.1080/00031305.1973.10479041 · doi:10.1080/00031305.1973.10479041
[8] Patil G. P., Sankhya 38 (5) pp 48– (1976)
[9] Rao, C. R. 1963.On discrete distributions arising out of methods of ascertainment. Classical and Contagious Discrete Distributions, Edited by: Patil, G. P. 320–332. Calcutta: Statistical Publishing Society.
[10] DOI: 10.1080/00031305.1977.10479187 · doi:10.1080/00031305.1977.10479187
[11] Sampson A. R., Ann. Statist 3 pp 747– (1975)
[12] DOI: 10.2307/1267291 · Zbl 0238.62011 · doi:10.2307/1267291
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.