zbMATH — the first resource for mathematics

A general extrapolation algorithm. (English) Zbl 0444.65001

65B05 Extrapolation to the limit, deferred corrections
40A05 Convergence and divergence of series and sequences
Full Text: DOI EuDML
[1] Brezinski C (1971) Accélération de suites à convergence logarithmique. CR Acad Sc Paris, 273 A:727-730 · Zbl 0248.65004
[2] Brezinski C (1975) Généralisations de la transformation de Shanks, de la table de Padé et de l’?algorithme. Calcolo, 12:317-360 · Zbl 0329.65006
[3] Brezinski C (1977) Accélération de la convergence en analyse numérique, (Lecture Notes in Mathematics vol 584). Springer, Berlin Heidelberg New York
[4] Brezinski C (1978) Algorithmes d’accélération de la convergence. Etude numérique, Technip, Paris · Zbl 0396.65001
[5] Brezinski C (1979) Sur le calcul de certains rapports de déterminants. In: Wuytack L (ed) Padé approximation and its applications (Lecture Notes in Mathematics vol 765). Springer, Berlin Heidelberg New York
[6] Cordellier F (1980) Analyse numérique des transformations de suites et de séries. Thèse, Université de Lille (in press)
[7] Gantmacher FR (1960) The theory of matrices. Chelsea Publications, New York
[8] Germain-Bonne B (1978) Estimation de la limite de suites et formalisation de procédés d’accélération de convergence. Thèse, Université de Lille
[9] Gray HL, Atchison TA (1968) The generalizedG-transform. Math. Comput 22:595-606
[10] Gray HL, Schucany WR (1969) Some limiting cases of theG-transformation. Math Comput 23:849-859 · Zbl 0207.17103
[11] Håvie T (1979) Generalized Neville type extrapolation schemes. BIT 19:204-213 · Zbl 0404.65001
[12] Laurent PJ (1964) Etude de procédés d’extrapolation en analyse numérique. Thèse, Université de Grenoble
[13] Levin D (1973) Development of non-linear transformations for improving convergence of sequences. Internat J Comput Math B3:371-388 · Zbl 0274.65004
[14] Mühlbach G (1978) The general Neville-Aitken algorithm and some applications. Numer Math 31:97-110 · Zbl 0427.65003
[15] Pye WC, Atchison TA (1973) An algorithm for the computation of higher orderG-transformations. SIAM J Numer Anal 10:1-7 · Zbl 0257.65109
[16] Shanks D (1955) Nonlinear transformations of divergent and slowly convergent sequences. J Math Phys 34:1-42 · Zbl 0067.28602
[17] Sidi A (1979) Some properties of a generalization of the Richardson extrapolation process. Technical report 142, Technion, Haifa, Israel · Zbl 0449.65001
[18] Smith DA, Ford WF (1979) Acceleration of linear and logarithmic convergence. SIAM J Numer Anal 16:223-240 · Zbl 0407.65002
[19] Wynn P (1956) On a device for computing thee m (Sn) transformation. MTAC 10:91-96 · Zbl 0074.04601
[20] Wynn P (1956) On a procrustean technique for the numerical transformation of slowly convergent sequences ans series. Proc Cambridge Phil Soc 52:663-671 · Zbl 0072.33802
[21] Wynn P (1960) Confluent forms of certain nonlinear algorithms. Arch Math 11:223-234 · Zbl 0096.09502
[22] Wynn P (1962) Acceleration technique in numerical analysis with particular reference to problems in one independant variable. Proc IFIP congress, North Holland Amsterdam, p 149
[23] Wynn P (1966) On the convergence and stability of the epsilon algorithm. SIAM J Numer Anal 3:91-122 · Zbl 0299.65003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.