A homomorphic characterization of time and space complexity classes of languages. (English) Zbl 0444.68035


68Q25 Analysis of algorithms and problem complexity
03D60 Computability and recursion theory on ordinals, admissible sets, etc.
68Q05 Models of computation (Turing machines, etc.) (MSC2010)
68Q45 Formal languages and automata
Full Text: DOI


[1] Book, R.V. and Brandenburg, F.J. Equality sets, fixed-point languages, and complexity classes. Proceedings of the Sixth International Colloquium on Automata, Languages and Programming. Graz, Austria. to appear · Zbl 0446.68040
[2] Culik K., Acta Informatica 10 pp 79– (1978) · Zbl 0385.68060 · doi:10.1007/BF00260925
[3] Culik K., JACM 26 pp 345– (1979) · Zbl 0395.68076 · doi:10.1145/322123.322136
[4] Culik K., Information Processing Letters 8 pp 5– (1979) · Zbl 0397.68083 · doi:10.1016/0020-0190(79)90080-2
[5] Culik K., Information and Control 35 pp 20– (1977) · Zbl 0365.68074 · doi:10.1016/S0019-9958(77)90512-5
[6] Culik K., On simple representations of language families, Revue d’Automatique, Informatique et Recherche Operationelle, to appear · Zbl 0432.68052
[7] Culik K., JCSS 17 pp 163– (1978) · Zbl 0389.68042 · doi:10.1016/0022-0000(78)90002-8
[8] Hopcroft J.E., Formal Languages and their Relation to Automata (1969) · Zbl 0196.01701
[9] Salomaa A., Acta Cybernetica
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.