×

Non-Hamiltonian simple 3-polytopes having just two types of faces. (English) Zbl 0445.05065


MSC:

05C45 Eulerian and Hamiltonian graphs
52Bxx Polytopes and polyhedra
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bondy, J.A.; Murty, U.S.R., Graph theory with applications, (1977), American Elsevier New York · Zbl 1134.05001
[2] Ewald, G., On shortness exponents of families of graphs, Israel J. math., 16, 53-61, (1973) · Zbl 0271.05107
[3] Faulkner, G.B.; Younger, D.H., Non-Hamiltonian cubic planar maps, Discrete math., 7, 67-74, (1974) · Zbl 0271.05106
[4] Goodey, P.R., Hamiltonian circuits in polytopes with even sided faces, Israel J. math., 22, 52-56, (1975) · Zbl 0317.05114
[5] Goodey, P.R., A class of Hamiltonian polytopes, J. of graph theory, 1, 181-185, (1977) · Zbl 0379.05037
[6] Grünbaum, B., Convex polytopes, (1967), Interscience New York · Zbl 0163.16603
[7] Grünbaum, B., Polytopes, graphs and complexes, Bull. amer. math., 76, 1131-1201, (1970) · Zbl 0211.25001
[8] Grünbaum, B.; Walther, H., Shortness exponents of families of graphs, J. combinatorial. theory A, 14, 364-385, (1973) · Zbl 0263.05103
[9] Grünbaum, B.; Zaks, J., The existence of certain planar maps, Discrete math., 10, 93-115, (1974) · Zbl 0298.05112
[10] Malkevitch, J., Three problems, Proc. N.Y. acad. of sci., (April 1978)
[11] Steinitz, E., Polyeder und raumeinteilungen, Enzykl. math. wiss., 3, 1-139, (1922), (Geometrie) Part 3AB12
[12] Zaks, J., Recent results in graph theory, Proc. 7th S.E. conf. on combinatorics, graph theory and computing, 527-532, (1976)
[13] Zaks, J., Some Hamiltonian results in polytopal graphs, Problemes combinatoires et theorie des graphes, 435-436, (1976), Orsay
[14] Zaks, J., Non-Hamiltonian non-Grinbergian graphs, Discrete math., 17, 317-321, (1977) · Zbl 0357.05052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.