×

A theory of numerical range for nonlinear operators. (English) Zbl 0445.47045


MSC:

47J10 Nonlinear spectral theory, nonlinear eigenvalue problems
47A12 Numerical range, numerical radius
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bauer, F. L., On the field of values subordinate to a norm, Numer. Math., 4, 103-111 (1962) · Zbl 0117.11004
[2] Bonsall, F. F.; Duncan, J., Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras (1971), Cambridge University Press: Cambridge University Press London/New York · Zbl 0207.44802
[3] Bonsall, F. F.; Duncan, J., Numerical Ranges II (1973), Cambridge University Press: Cambridge University Press London/New York · Zbl 0262.47001
[4] M. Furi and A. Vignoli; M. Furi and A. Vignoli · Zbl 0366.47028
[5] Furi, M.; Vignoli, A., A nonlinear approach to surjectivity in Banach spaces, J. Functional Analysis, 20, 304-318 (1975) · Zbl 0315.47036
[6] Halmos, P. R., (A Hilbert Space Problem Book (1967), Van Nostrand: Van Nostrand Princeton, N. J) · Zbl 0144.38704
[7] Kuratowsky, K., Introduction to Set Theory and Topology (1972), Pergamon Press: Pergamon Press London/New York · Zbl 0267.54002
[8] Lumer, G., Semi-inner product spaces, Trans. Amer. Math. Soc., 100, 29-43 (1961) · Zbl 0102.32701
[9] Toeplitz, O., Das algebraische Analogen zu einen Satze von Fejer, Math. Zeit., 2, 187-197 (1918)
[10] Yosida, K., Functional Analysis (1971), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0217.16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.