×

zbMATH — the first resource for mathematics

Duality for nonlinear multiple-criteria optimization problems. (English) Zbl 0445.90082

MSC:
90C31 Sensitivity, stability, parametric optimization
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Geoffrion, A. M.,Proper Efficiency and the Theory of Vector Maximization, Journal of Mathematical Analysis and Applications, Vol. 22, pp. 618-630, 1968. · Zbl 0181.22806
[2] Benson, H. P.,Efficiency and Proper Efficiency in Vector Maximization with Respect to Cones, General Motors Research Laboratories, Warren, Michigan, Research Publication No. GMR-2557, 1977.
[3] Benson, H. P.,An Improved Definition of Proper Efficiency for Vector Maximization with Respect to Cones, General Motors Research Laboratories, Warren, Michigan, Research Publication No. GMR-2663, 1978.
[4] Benson, H. P., andMorin, T. L.,The Vector Maximization Problem: Proper Efficiency and Stability, SIAM Journal of Applied Mathematics, Vol. 32, pp. 64-72, 1977. · Zbl 0357.90059
[5] Bitran, G. R., andMagnanti, T. L.,The Structure of Admissible Points with Respect to Cone Dominance, Journal of Optimization Theory and Applications, Vol. 29, pp. 583-614, 1979. · Zbl 0389.52021
[6] Borwein, J.,Proper Efficient Points for Maximizations with Respect to Cones, SIAM Journal on Control and Optimization, Vol. 15, pp. 57-63, 1977. · Zbl 0369.90096
[7] Borwein, J.,The Geometry of Pareto Efficiency Over Cones, Dalhousie University, Preprint, 1978. · Zbl 0447.90077
[8] Hartley, R.,On Cone-Efficiency, Cone Convexity, and Cone-Compactness, SIAM Journal on Applied Mathematics, Vol. 34, pp. 211-222, 1978. · Zbl 0379.90005
[9] Da Cunha, N. O., andPolak, E.,Constrained Minimization under Vector-Valued Criteria in Finite-Dimensional Spaces, Journal of Mathematical Analysis and Applications, Vol. 19, pp. 103-124, 1967. · Zbl 0154.44801
[10] Gros, C.,Generalization of Fenchel’s Duality Theory for Convex Vector Optimization, European Journal of Operations Research, Vol. 2, pp. 368-376, 1978. · Zbl 0424.90068
[11] Hurwicz, L.,Programming in Linear Spaces, Studies in Linear and Nonlinear Programming, Edited by K. J. Arrow, L. Hurwicz, and H. Uzawa, Stanford University Press, Stanford, California, 1958. · Zbl 0091.16002
[12] Kuhn, H. W., andTucker, A. W.,Nonlinear Programming, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, California, pp. 481-492, 1950.
[13] Lin, J. G.,Maximal Vectors and Multi-Objective Optimization, Journal of Optimization Theory and Applications, Vol. 18, pp. 41-64, 1976. · Zbl 0298.90056
[14] Robinson, S. M.,First-Order Conditions for General Nonlinear Optimization, SIAM Journal on Applied Mathematics, Vol. 30, pp. 597-607, 1976. · Zbl 0364.90093
[15] Sch?nfeld, K. P.,Some Duality Theorems for the Nonlinear Vector Maximum Problem, Unternehmensforschung, Vol. 14, pp. 51-63, 1970. · Zbl 0194.20401
[16] Yu, P. L.,Cone Convexity, Cone Extreme Points, and Nondominated Solutions in Decision Problems with Multiobjectives, Journal of Optimization Theory and Applications, Vol. 14, pp. 319-377, 1974. · Zbl 0268.90057
[17] Seiford, L., andYu, P. L.,Potential Solutions of Linear Systems: The Multi-Criteria Multiple Constraint Levels Program, Journal of Mathematical Analysis and Applications, Vol. 69, pp. 283-303, 1979. · Zbl 0415.90078
[18] Tanino, T., andSawaragi, Y.,Duality Theory in Multiobjective Programming, Journal of Optimization Theory and Applications, Vol. 27, pp. 509-529, 1979. · Zbl 0378.90100
[19] Craven, B. D.,Strong Vector Minimization and Duality, Zeitschrift F?r Angewandte Mathematik Und Mechanic, Band 60, Heft 1, pp. 1-5, 1980. · Zbl 0422.90073
[20] Ritter, K.,Optimization Theory in Linear Spaces, III, Mathematical Annals, Vol. 184, pp. 133-154, 1970. · Zbl 0186.18203
[21] Zowe, J.,A Duality Theory for a Convex Programming Problem in Order-Complete Vector Lattices, Journal of Mathematical Analysis and Applications, Vol. 50, pp. 273-287, 1975. · Zbl 0314.90079
[22] Zowe, J.,The Saddle-Point Theorem of Kuhn and Tucker in Ordered Vector Spaces, Journal of Mathematical Analysis and Applications, Vol. 57, pp. 41-55, 1977. · Zbl 0354.90070
[23] Ritter, K.,Optimization Theory in Linear Spaces, I, Mathematical Annals, Vol. 182, pp. 189-206, 1969. · Zbl 0177.40402
[24] Ritter, K.,Optimization Theory in Linear Spaces, II, Mathematical Annals, Vol. 183, pp. 169-180, 1969. · Zbl 0186.18202
[25] Gale, D., Kuhn, H. W., andTucker, A. W.,Linear Programming and the Theory of Games, Activity Analysis of Production and Allocation, Edited by T. C. Koopmans, John Wiley and Sons, New York, New York, 1951.
[26] Isermann, H.,The Relevance of Duality in Multiple-Objective Linear Programming, TIMS Studies in the Management Sciences, Vol. 6, pp. 241-262, North-Holland Publishing Company, New York, New York, 1977.
[27] Isermann, H.,On Some Relations between a Dual Pair of Multiple-Objective Linear Programs, Zeitschrift fur Operations Research, Vol. 22, pp. 33-41, 1978. · Zbl 0375.90049
[28] R?dder, W.,A Generalized Saddle-point Theory, European Journal of Operational Research, Vol. 1, pp. 55-59, 1977. · Zbl 0383.90099
[29] Gal, T.,An Overview on Recent Results in MCP as Developed in Aachen, Germany, Proceedings of the Conference on Multiple-Criteria Problem Solving, Buffalo, New York, 1977. · Zbl 0388.90075
[30] Isermann, H.,Duality in Multiple Objective Linear Programming, Proceedings of the Conference on Multiple-Criteria Problem Solving, Buffalo, New York, 1977. · Zbl 0372.90086
[31] Kornbluth, J. S. H.,Duality, Indifference, and Sensitivity Analysis in Multiple-Objective Linear Programming, Operational Research Quarterly, Vol. 25, pp. 599-614, 1974. · Zbl 0298.90042
[32] Rosinger, E. E.,Duality and Alternative in Multiobjective Optimization, Proceedings of the American Mathematical Society, Vol. 64, pp. 307-312, 1977. · Zbl 0333.49030
[33] Naccache, P. H.,Stability in Multicriteria Optimization, Journal of Mathematical Analysis and Applications, Vol. 68, No. 2, pp. 441-453, 1979. · Zbl 0418.90079
[34] Mangasarian, O. L.,Nonlinear Programming, McGraw-Hill Book Company, New York, New York, 1969.
[35] Ecker, J. G., andKouada, I. A.,Generating Maximal Efficient Faces for Multiple-Objective Linear Programs, Universit? Catholique de Louvain, Heverlee, Belgium, Core Discussion Paper No. 7617, 1976.
[36] Evans, J. P., andSteuer, R. E.,A Revised Simplex Method for Linear Multiple-Objective Programs, Mathematical Programming, Vol. 5, pp. 54-72, 1973. · Zbl 0281.90045
[37] Philip, J.,Algorithms for the Vector-Maximization Problem, Mathematical Programming, Vol. 2, pp. 207-299, 1972. · Zbl 0288.90052
[38] Yu, P. L., andZeleny, M.,The Set of All Nondominated Solutions in Linear Cases and a Multicriteria Simplex Method, Journal of Mathematical Analysis and Applications, Vol. 49, pp. 430-468, 1975. · Zbl 0313.65047
[39] Fiacco, A. V., andMcCormick, G. P.,Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley and Sons, New York, New York, 1968. · Zbl 0193.18805
[40] Shapiro, J. F.,Mathematical Programming Structures and Algorithms, John Wiley and Sons, New York, New York, 1979. · Zbl 0502.90054
[41] Varaiya, P. P.,Notes on Optimization, Van Nostrand Reinhold Company, New York, New York, 1972. · Zbl 0251.90034
[42] Rockafellar, T. R.,Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970. · Zbl 0193.18401
[43] Zionts, S., andWallenius, J.,An Interactive Programming Method for Solving the Multiple-Criteria Problem, Management Science, Vol. 22, pp. 652-663, 1976. · Zbl 0318.90053
[44] Steuer, R.,An Interactive Multiple-Objective Linear Programming Procedure, TIMS Studies in the Management Sciences, Vol. 6, pp. 225-239, North-Holland Publishing Company, New York, New York, 1977.
[45] Villarreal, B., andKarwan, M.,Multicriterion Integer Linear Programming: A (Hybrid) Dynamic Programming Recursive Approach, State University of New York at Buffalo, Buffalo, New York, Department of Industrial Engineering, Technical Report No. 78-4, 1978.
[46] Gould, F. J., andTolle, J. W.,Geometry of Optimality Conditions and Constraint Qualifications, Mathematical Programming, Vol. 2, pp. 1-18, 1972. · Zbl 0288.90068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.