×

zbMATH — the first resource for mathematics

Are colimits of algebras simple to construct? (English) Zbl 0446.18003

MSC:
18C15 Monads (= standard construction, triple or triad), algebras for monads, homology and derived functors for monads
08B25 Products, amalgamated products, and other kinds of limits and colimits
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adámek, J, Cogeneration of algebras in regular categories, Bull. austral. math. soc., 15, 355-370, (1976) · Zbl 0343.18006
[2] Adámek, J, Colimits of algebras revisited, Bull. austral. math. soc., 17, 433-450, (1977) · Zbl 0365.18007
[3] Adámek, J; Koubek, V, Algebras and automata over a functor, Kybernetika (Prague), 13, 245-260, (1977) · Zbl 0377.94065
[4] Barr, M, Coequalizers and free triples, Math. Z., 116, 307-322, (1970) · Zbl 0194.01701
[5] Barr, M, Right exact functors, J. pure appl. algebra, 4, 1-8, (1974) · Zbl 0281.18003
[6] Herrlich, H; Strecker, G.E, Category theory, (1973), Allyn & Bacon Boston · Zbl 0265.18001
[7] Koubek, V; Reiterman, J, Categorical constructions of free algebras, colimits and completions of partial algebras, J. pure appl. algebra, 14, 195-231, (1979) · Zbl 0403.18002
[8] Linton, F.E.J, Coequalizers in categories of algebras, () · Zbl 0181.02902
[9] MacLane, S, Categories for the working Mathematician, (1971), Springer-Verlag Berlin/New York
[10] Manes, E.G, Algebraic theories, (1976), Springer-Verlag Berlin/New York · Zbl 0489.18003
[11] Schubert, H, Categories, (1972), Springer-Verlag Berlin/New York
[12] Kelly, G.M, Quelques observations sur LES demonstrations par recurrence transfinie en algèbre catégorique, Cahiers topologie Géom. différentielle, 16, 259-263, (1975) · Zbl 0359.18006
[13] Tholen, W, Semitopological functors. I, J. pure appl. algebra, 15, 53-73, (1979) · Zbl 0413.18001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.