Lebeau, Gilles Fonctions harmoniques et spectre singulier. (French) Zbl 0446.46035 Ann. Sci. Éc. Norm. Supér. (4) 13, 269-291 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 13 Documents MSC: 46F15 Hyperfunctions, analytic functionals 58J15 Relations of PDEs on manifolds with hyperfunctions 31B05 Harmonic, subharmonic, superharmonic functions in higher dimensions Keywords:singular spectrum; Sato microfunctions; Poisson kernel; harmonic extension; pseudo convex cone PDF BibTeX XML Cite \textit{G. Lebeau}, Ann. Sci. Éc. Norm. Supér. (4) 13, 269--291 (1980; Zbl 0446.46035) Full Text: DOI Numdam EuDML OpenURL References: [1] BONY , Appendice dans Propagation des singularités différentiables... , Soc. math. France (Astérisque, vol. 34-35, 1976 , p. 43-91). Numdam | Zbl 0344.35075 · Zbl 0344.35075 [2] BOUTET DE MONVEL , (a) Opérateurs pseudo-diff. analytiques... (Ann. Inst. Fourier, 1972 , p. 229-268) ; (b) Convergence dans le domaine complexe des séries de fonctions propres (C.R. Acad. Sc., t. 287, série A, 1978 , p. 855. Zbl 0392.35043 · Zbl 0392.35043 [3] BROS-IAGOLNITZER , Support essentiel et structure analytique des distributions (Séminaire Goulaouic-Lions-Schwartz, n^\circ 18, 1975 ). Numdam | Zbl 0333.46029 · Zbl 0333.46029 [4] MARTINEAU , Les hyperfonctions de M. Sato (Séminaire Bourbaki, vol. 214, 1960 / 1961 ). Numdam | Zbl 0122.34902 · Zbl 0122.34902 [5] SCHAPIRA , Théorie des hyperfonctions (Lect. Notes in Maths., vol. 126, Springer-Verlag, 1970 ). MR 58 #30195 | Zbl 0192.47305 · Zbl 0192.47305 [6] S. K. K. : M. SATO , T. KAWAI et M. KASHIWARA , Hyperfunctions and Pseudo Differential Equations (Lect. Notes in Maths, vol. 287, 1973 , Springer, p. 265-529). MR 54 #8747 | Zbl 0277.46039 · Zbl 0277.46039 [7] MELLIN-SJÖSTRAND , Fourier Integral Operators with Complex Valued Phase Functions (Lect. Notes in Maths, vol. 459, 1975 , Springer). MR 55 #4290 | Zbl 0306.42007 · Zbl 0306.42007 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.