×

Power spectrum of the periodic group pulse process. (English) Zbl 0446.60024


MSC:

60G35 Signal detection and filtering (aspects of stochastic processes)
78A40 Waves and radiation in optics and electromagnetic theory
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] D. Middleton: On the Theory of Random Noise: Phenomenological Models I, II. J. Appl. Physics 22 (1951), 9, 1143-1163, also in D. Middleton: An Introduction to Statistical Communication Theory. McGraw-Hill, New York 1960. · Zbl 0045.27302
[2] W. J. Richter, Jr. T. J. Smits: Numerical Evaluation of Rice’s Integral Representation of the Probability Density Function for Poisson Impulsive Noise. J. Acoust. Soc. Am. 56 (1974), 2, 481-496. · Zbl 0294.65011
[3] H. Bittel L. Storm: Rauschen. Springer, Berlin 1971.
[4] P. Mazzetti: Study of Nonindependent Random Pulse Trains, with Application to the Barkhausen Noise. Nuovo Cimento 25 (1962), 6, 1322-1341.
[5] V. A. Akuličev V. V. Olševskij: Svjaz statističeskich charakteristik akustičeskoj kavitacii i kavitacionnovo šuma. Akustičeskij žurnal 14 (1968), 1, 30-36.
[6] K. Vokurka: On the Cavitation Noise Theory. The 5th Conf. of Czechoslovac Physicists, Košice 1977, p. 918.
[7] Ch. Heiden: Power Spectrum of Stochastic Pulse Sequences with Correlation between the Pulse Parameters. Physical Review 188 (1969), 1, 319-326.
[8] B. R. Levin: Nekotorye obobščenija v teorii impulsnych slučajnych procesov. Elektro-svjaz (1963), 2, 21-28, also in B. R. Levin: Teoretičeskie osnovy statističeskoj radiotechniki. Sovetskoe Radio, Moskva 1969.
[9] G. V. Konovalov E. M. Tarasenko: Impulsnye slučajnye procesy v elektrosvjazi. Svjaz, Moskva 1973.
[10] G. G. Macfarlane: On the Energy-Spectrum of an Almost Periodic Succession of Pulses. Proc. I.R.E. 57(1949), 1139-1143.
[11] J. L. Lawson G. E. Uhlenbeck: Treshold Signals. McGraw-Hill, New York 1950.
[12] S. O. Rice: Mathematical Analysis of Random Noise. Bell System Techn. J. 23 (1944), 3, 282-332. · Zbl 0063.06485
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.