Caillerie, D. The effect of a thin inclusion of high rigidity in an elastic body. (English) Zbl 0446.73014 Math. Methods Appl. Sci. 2, 251-270 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 38 Documents MSC: 74E05 Inhomogeneity in solid mechanics 35R15 PDEs on infinite-dimensional (e.g., function) spaces (= PDEs in infinitely many variables) Keywords:limit behaviour of inclusion; inclusion becomes thiner and more rigid; variational methods PDF BibTeX XML Cite \textit{D. Caillerie}, Math. Methods Appl. Sci. 2, 251--270 (1980; Zbl 0446.73014) Full Text: DOI References: [1] Caillerie, Sur le comportement limite d’une inclusion mince de grande rigidité, C. R. Acad. Sci. Paris (1978) · Zbl 0389.73016 [2] Ciarlet, A justification of the two-dimensional linear plate model, J. de Mécanique 18 (n\(\deg\)2) (1979) [3] Duvaut, Les Inéquations en Mécanique et en Physique (1976) [4] Landau, Théorie de l’Elasticité (1967) [5] Necas, Les Méthodes Directes en Théorie des Equations Elliptiques (1967) [6] Pham Huy, Phénomènes de transmission à travers des couches minces de conductivité élevée, J. Math. Anal. and Appl. 47 pp n\(\deg\)2– (1974) [7] Simonenko, Electrostatic problems for non uniformal media. The case of a thin dielectric with a high dielectric constant. I and II, Differ. Equa. 10 pp 223– (1974) [8] Differ. Equa. 11 pp 1398– (1975) [9] Simonenko, Limit problem in thermal conductivity in a homogeneous medium, Siberian Math. J. 16 pp 991– (1975) · Zbl 0337.35038 · doi:10.1007/BF00967397 [10] Smirnov, A course of Higher Mathematics V (1964) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.