The effect of a thin inclusion of high rigidity in an elastic body. (English) Zbl 0446.73014


74E05 Inhomogeneity in solid mechanics
35R15 PDEs on infinite-dimensional (e.g., function) spaces (= PDEs in infinitely many variables)
Full Text: DOI


[1] Caillerie, Sur le comportement limite d’une inclusion mince de grande rigidité, C. R. Acad. Sci. Paris (1978) · Zbl 0389.73016
[2] Ciarlet, A justification of the two-dimensional linear plate model, J. de Mécanique 18 (n{\(\deg\)}2) (1979)
[3] Duvaut, Les Inéquations en Mécanique et en Physique (1976)
[4] Landau, Théorie de l’Elasticité (1967)
[5] Necas, Les Méthodes Directes en Théorie des Equations Elliptiques (1967)
[6] Pham Huy, Phénomènes de transmission à travers des couches minces de conductivité élevée, J. Math. Anal. and Appl. 47 pp n{\(\deg\)}2– (1974)
[7] Simonenko, Electrostatic problems for non uniformal media. The case of a thin dielectric with a high dielectric constant. I and II, Differ. Equa. 10 pp 223– (1974)
[8] Differ. Equa. 11 pp 1398– (1975)
[9] Simonenko, Limit problem in thermal conductivity in a homogeneous medium, Siberian Math. J. 16 pp 991– (1975) · Zbl 0337.35038 · doi:10.1007/BF00967397
[10] Smirnov, A course of Higher Mathematics V (1964)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.