×

zbMATH — the first resource for mathematics

Discretization by finite elements of a model parameter dependent problem. (English) Zbl 0446.73066

MSC:
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Babu?ka, I., Aziz, A.K.: Survey lectures on the finite element method. In: The mathematical foundations of the finite element method with applications to partial differential equations (A.K. Aziz, ed.), pp. 5-359. New York: Academic Press 1973
[2] Bercovier, M.: Perturbation of mixed variational problems. Application to mixed finite element methods. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér.12, 211-236 (1978)
[3] Brezzi, F.: On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers. Rev. Française Automat. Informat. Recherche Opérationnelle8 R-2, 129-151 (1974) · Zbl 0338.90047
[4] Falk, R., Osborn, J.: Error estimates for mixed methods. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. (in press 1981)
[5] Fried, I.: Finite element analysis of incompressible material by residual energy balancing. Internat. J. Solids and Structures10, 993-1002 (1974) · Zbl 0281.73045 · doi:10.1016/0020-7683(74)90007-9
[6] Hughes, T.J.R., Cohen, M., Haroun, M.: Reduced and selective integration techniques in the finite element analysis of plates. Nuclear Engrg. Design46, 203-222 (1978) · doi:10.1016/0029-5493(78)90184-X
[7] Hughes, T.J.R., Taylor, R.L., Kanoknukulchai, W.: A simple and efficient finite element for plate bending. Internat. J. Numer. Methods Engrg.11, 1529-1543 (1977) · Zbl 0363.73067 · doi:10.1002/nme.1620111005
[8] Malkus, D.S., Hughes, T.J.R.: Mixed finite element methods-reduced and selective integration techniques: a unification of concepts. Comput. Methods Appl. Mech. Engrg.15, 63-81 (1978) · Zbl 0381.73075 · doi:10.1016/0045-7825(78)90005-1
[9] Pawsey, S.F., Clough, R.W.: Improved numerical integration of thick shell finite elements. Internat. J. Numer. Methods Engrg.3, 545-586 (1971) · Zbl 0248.73035 · doi:10.1002/nme.1620030411
[10] Pugh, E.D.L., Hinton, E., Zienkiewicz, O.C.: A study of quadrilateral plate bending elements with reduced integration. Internat. J. Numer. Methods Engrg.12, 1059-1079 (1978) · Zbl 0377.73065 · doi:10.1002/nme.1620120702
[11] Timoshenko, S.P.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. Ser.6, 41, 744-746 (1921) · doi:10.1080/14786442108636264
[12] Zienkiewicz, O.C., Hinton, E.: Reduced integration, function smoothing and non-conformity in finite element analysis (with special reference to thick plates). J. Franklin Inst.302, 443-461 (1976) · Zbl 0351.73099 · doi:10.1016/0016-0032(76)90035-1
[13] Zienkiewicz, O.C., Taylor, R.L., Too, J.M.: Reduced integration techniques in general analysis of plates and shells. Internat. J. Numer. Methods Engrg.5, 275-290 (1971) · Zbl 0253.73048 · doi:10.1002/nme.1620030211
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.