×

A geometrical index for the group \(S^1\) and some application to the study of periodic solutions of ordinary differential equations. (English) Zbl 0447.34040


MSC:

34C25 Periodic solutions to ordinary differential equations
58J20 Index theory and related fixed-point theorems on manifolds
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Fadell, Inventiones Math. 45 pp 139– (1978)
[2] Ekeland, Annals of Math. 112 pp 283– (1980)
[3] Ambrosetti, J. Funct. Anal. 14 pp 349– (1973)
[4] Variational methods for nonlinear eigenvalue problems in Eigenvalues of Non-linear Problems, editor, Edizioni Cremonese, Roma, 1974, pp. 141–195.
[5] Yang, Ann. of Math. 60 pp 262– (1954)
[6] Yang, Ann. of Math. 62 pp 271– (1955)
[7] Conner, Bull. Ann. Math. Soc. 66 pp 416– (1960)
[8] Holm, Topology 10 pp 203– (1971)
[9] Fadell, J. Funct. Anal. 26 pp 48– (1977)
[10] The Theory of Groups and Quantum Mechanics, Dover, New York, 1950.
[11] Fonctions Speciales et Théorie de la Représentation des Groupes, Dunod, Paris, 1969.
[12] Benci, Inventiones Math. 52 pp 241– (1979)
[13] Nonlinearity and Functional Analysis, Academic Press, New York, 1977.
[14] Rabinowitz, Comm. Pure Appl. Math. 31 pp 157– (1978)
[15] A variational method for finding periodic solutions of differential equations in Nonlinear Evolution Equations, Ed., Academic Press, New York, 1978, pp. 225–251.
[16] Differential Analysis on Complex Manifolds, Prentice Hall, Englewood Cliffs, N.J., 1973.
[17] and , Characteristic Classes, Princeton University Press, Princeton, 1974. · Zbl 0298.57008
[18] Topological Methods in the Theory of Nonlinear Integral Equations, Macmillan, New York, 1964.
[19] Weinstein, Inv. Math. 20 pp 47– (1973)
[20] Moser, Comm. Pure Appl. Math. 29 pp 727– (1976)
[21] Berger, Amer. J. Math. 93 pp 7– (1971)
[22] Clark, Proc. A.M.S. 39 pp 579– (1973)
[23] Cambini, Boll Un. Mat. It. 4 pp 713– (1974)
[24] Clarke, J. Diff. Equat.
[25] Clarke, Comm. Pure Appl. Math. 33 pp 103– (1980)
[26] Benci, Comm. Pure Appl. Math. 33 pp 147– (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.