×

zbMATH — the first resource for mathematics

Existence de maillages optimaux dans les méthodes d’éléments finis. (French) Zbl 0447.65062

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] 1 I BABUSKA et W RHEINBOLDT, Analysis of Optimal Finite Element in \(R\), University of Maryland, Technical note BN-869, 1978
[2] 2 I BABUšKA et W RHEINBOLDT, Error Estimates for Adaptive Finite Element Computations, University of Maryland, Technical note BN-854, 1977, S I A M J Num anal (à paraître) Zbl0398.65069 MR483395 · Zbl 0398.65069
[3] 3 W E CARROLL et R M BARKER, A Theorem of Optimum Finite Element Idealisation, Int J Solids and Structures, vol 9, 1973, p 883-895 MR337119
[4] 4 Ph CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978 Zbl0383.65058 MR520174 · Zbl 0383.65058
[5] 5 G M MCNEICE et P V MARCAL, Optimization of Finite Element Grids Based on Minimum Potential Energy, J Engg for Industry, vol 95, série B, n^\circ 1, 1973, p 186-190
[6] 6 J NEČAS, Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967 MR227584 · Zbl 1225.35003
[7] 7 P OLIVEIRA, Maillages optimaux dans les méthodes d’éléments finis, Thèse de 3e cycle, Paris, 1979
[8] 8 P OLIVEIRADérivabilité de l’erreur par rapport à la triangulation dans les méthodes d’éléments finis R A I R O , Analyse numérique, vol 14, n^\circ 3 1980 Zbl0447.65063 · Zbl 0447.65063
[9] 9 W PRAGER, A Note on the Optimal Choice of Finite Elements Grids, Computer Methods in Applied Mechanics and Engineering, vol 6, 1975, p 363-366 Zbl0323.73059 MR458944 · Zbl 0323.73059
[10] 10 J W TANG et D J TURCKE, Characteristics of Optimal Grids, Computer Methods in Applied Mechanics and Engineering, vol 11, 1977, p 31-37
[11] 11 D J TURCKE et G M MCNEICE, Guidelines for Selecting Finite Element Grids Based on an Optimization Study, Computers and Structures, vol 4, 1974, p 499-519
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.