×

Derivabilite de l’erreur par rapport à la triangulation dans les méthodes d’éléments finis. (French) Zbl 0447.65063


MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65N15 Error bounds for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
PDFBibTeX XMLCite
Full Text: EuDML

References:

[1] 1 E R ARANTES OLIVEIRA, Optimization of Finite Element Solutions, Proceedings of the 3rd Conference on Matrix Methods in Structural Mechanics, Wright Patterson Air Force Base, Ohio, 1971
[2] 2 I BABUSKA et W RHEINBOLDT, Analysis of Optimal Finite Element in R1, Umversity ofMaryland, Technical note BN-869, 1978
[3] 3 I BABUSKA et W RHEINBOLDT, Error Estimates for Adaptive Finite Element Computations, University of Maryland, Computer Science Technical Report BN-854, 1977, S I A M J Num Anal (a paraître) Zbl0398.65069 MR483395 · Zbl 0398.65069 · doi:10.1137/0715049
[4] 4 Ph CIARLET, The Finite Element Method for Elliptic Problems, North-Holland,Amsterdam, 1978 Zbl0383.65058 MR520174 · Zbl 0383.65058
[5] 5 G McNEICE et P MARCAL, Optimization of Finite Element Grids Based on Minimum Potential Energy, J Engg for Industry, vol 95, serie B, n^\circ 1, 1973, p 186-190
[6] 6 A MAROCCO et O PIRONNEAU, Optimum Design with Lagrangian Finite Elements Design of an Electromagnet, Computer Methods in Applied Mechanics and Engineering, vol 15, 1978, p 277-308
[7] 7 F MIGNOT, F MURAT et J P PUEL, Variation d’un point de retournement par rapport au domaine, Comm m P D E , 1979 (a paraître) Zbl0422.35039 · Zbl 0422.35039 · doi:10.1080/03605307908820128
[8] 8 F MURAT et J SIMON, Etude de problèmes d’optimal design, Proceedings of the 7th I F I P Conference, Nice, septembre 1975, Part 2, Lecture Notes in Computer Sciences, n^\circ 41, Springer Verlag, 1976 Zbl0334.49013 · Zbl 0334.49013
[9] 9 F MURAT et J SIMON, Quelques résultats sur le contrôle par un domaine géométrique, Publications du Laboratoire d’Analyse numérique (L A n^\circ 189), Université Pans-VI 1976
[10] 10 P OLIVEIRA, Existence de maillages optimaux, R A I R O, Analyse numérique, vol 14, n^\circ 3, 1980
[11] 11 P OLIVEIRA, Maillages optimaux dans les méthodes d’éléments finis, Thèse de 3 cycle, Paris, 1979
[12] 12 W PRAGER, A Note on the Optimal Choice of Finite Element Grids, ComputerMethods in Applied Mechanics and Engineering, vol 6, 1975, p 363-366 Zbl0323.73059 MR458944 · Zbl 0323.73059 · doi:10.1016/0045-7825(75)90027-4
[13] 13 L SCHWARTZ, Analyse mathématique, Cours professe a l’Ecole Polytechnique deParis, Hermann, Paris, 1967 Zbl0171.01301 · Zbl 0171.01301
[14] 14 J W TANG et D J TURCKE, Characteristic of Optimal Grids, Computer Methods inApplied Mechanics and Engineering, vol 11, 1977, p 31-37
[15] 15 D J TURCKE et G M McNEICE, Guidelines for Selecting Finite Element Grids Based on an Optimization Study, Computer and Structures, vol 4, 1974, p 499-519
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.