zbMATH — the first resource for mathematics

Numerical solution of steady-state porous flow free boundary problems. (English) Zbl 0447.76074

76S05 Flows in porous media; filtration; seepage
35Q99 Partial differential equations of mathematical physics and other areas of application
35R35 Free boundary problems for PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
49J40 Variational inequalities
Full Text: DOI EuDML
[1] Alt, H.W.: Strömungen durch inhomogene poröse Medien mit freiem Rand. J. Reine Angew. Math.305, 89-115 (1979) · Zbl 0392.76091 · doi:10.1515/crll.1979.305.89
[2] Alt, H.W.: A new numerical method for solving the dam problem. Proceeding Seminar on Free Boundary Problems. Sept.?Oct. 1979 (in press, 1980)
[3] Brezzi, F., Sacchi, G.: A finite element approximation of a variational inequality related to hydraulics. Laboratorio Anal. Numer. Consiglio Naz. Ricerche Pubbl.97 (1976) · Zbl 0353.76068
[4] Caffarelli, L.A., Riviere, N.M.: Existence and uniqueness for the problem of filtration through a porous medium. Notices Amer. Math. Soc.24, A576 (1977) · Zbl 0364.35041
[5] Comincioli, V.: A comparison of algorithm for some free boundary problems. Laboratorio Anal. Numer. Consiglio Naz. Ricerche Pubbl.79 (1976) · Zbl 0327.76043
[6] Comincioli, V., Guerri, L.: Numerical solution of free boundary problems in seepage flow with capillary fringe. Laboratorio Anal. Numer. Consiglio Naz. Ricerche Pubbl.96 (1976) · Zbl 0327.76043
[7] Comincioli, V., Guerri, L., Volpi, G.: Analisi numerica di un problema die frontiera libera connessa col moto di un fluido attraverso un mezzo poroso. Laboratorio Anal. Numer. Consiglio Naz. Ricerche Pubbl.17 (1971) · Zbl 0263.65075
[8] Cryer, C.W.: A survey of steady-state porous flow free boundary problems. M.R.C. Univ. Wisconsin,1657 (1976)
[9] Cryer, C.W.: A survey of trial free boundary methods for the numerical solution of free boundary problems. M.R.C. Univ. Wisconsin,1693 (1976)
[10] Cryer, C.W., Fetter, H.: The numerical solution of axis-symmetric free boundary porous flow well problems using variational inequalities. M.R.C. Univ. Wisconsin,1761 (1977) · Zbl 0416.76045
[11] Kikuchi, N.: An analysis of the variational inequalities of seepage flow by finite-element methods. Quart. Appl. Math.35, 149-163 (1977) · Zbl 0358.76061
[12] Morrey, C.B.: Multiple integrals in the calculus of variations. Berlin Heidelberg New York: Springer 1966 · Zbl 0142.38701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.