Pohl, William F. DNA and differential geometry. (English) Zbl 0447.92013 Math. Intell. 3, 20-27 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 9 Documents MSC: 92D10 Genetics and epigenetics 53C99 Global differential geometry Keywords:spatial structure of DNA Citations:Zbl 0193.509 PDF BibTeX XML Cite \textit{W. F. Pohl}, Math. Intell. 3, 20--27 (1980; Zbl 0447.92013) Full Text: DOI OpenURL References: [1] Bauer, W. R., Crick, F. H. C., White, J. H.: Supercoiled DNA.Scient. Am. 243, 118–133 (July, 1980) [2] Brown, P. O., Cozzarelli, N. R.: A sign inversion mechanism for enzymatic supercoiling of DNA.Science 206, 1081–1083 (30. Nov. 1979) [3] Calugareanu, G.: Sur les classes ďisotopie des noeuds tridimensonnels et leurs invariants.Czechoslovak Math. J. 11, 588–625 (1961) · Zbl 0118.16005 [4] Crick, F. H. C.: Linking numbers and nucleosomes.Proc. Natl. Acad. Sci. USA 73, 2639–2643 (1976) [5] Cozzarelli, N. R.: DNA gyrase and the supercoiling of DNA.Science 207, 953–960 (29. February 1980) [6] Frank-Kamenetskii, M. D., Lukashin, A. V., Vologodski, A. V.: Statistical mechanics and topology of polymer chains.Nature 258, 298–402 (1975) [7] Fuller, F. B.: The writhing number of a space curve.Proc. Natl. Acad. Sci. USA 68, 815–819 (1971) · Zbl 0212.26301 [8] Fuller, F. B.: Decomposition of the linking number of a closed ribbon: A problem from molecular biology.Proc. Natl. Acad. Sci. USA 75, 3557 (1978) · Zbl 0395.92010 [9] Hsieh, T.-S., Brutlag, D.: ATP-dependent DNA topoisomerase from D. melanogaster reversibly catenates duplex DNA rings.Cell 21, 115–125 (1980) [10] Klotz, G., Kleinschmidt, A. K., Goebel, W.: Counting super- helical turns in electron micrographs of large plasmids.Ninth International Congress on Electron Microscopy, Toronto 1978, 2, 196–197 [11] Liu, L. F., Wang, J. C.: On the degree of unwinding of the DNA helix by ethidium. II. Studies by electron microscopy.Biochim. etBiophys. Acta 395, 405–412 (1975) [12] Pohl, W. F.: Some integral formulas for space curves and their generalization.Amer. J. of Math. 90, 1321–1345 (1968) · Zbl 0181.50303 [13] Pohl, W. F.: The self-linking number of a closed space curve.J. of Math. and Mech. 17, 975–986 (1968) · Zbl 0164.54005 [14] Pohl, W. F.: The probability of linking of random closed curves. To appear in Geometry Symposium, Utrecht. On the occasion of N. A. Kuiper’s 60th birthday.Lecture Notes in Mathematics. Springer, Berlin Heidelberg New York [15] Pohl, W. F., Roberts, G. W.: Topological considerations in the theory of replication of DNA.J. Math. Biology 6, 383–402 (1978) [16] Rodley, G. A., Scobie, R. S., Bates, R. H. T., Lewitt, R. M.: A possible conformation for double-stranded polynucleotides.Proc. Natl. Acad. Sci. USA 73, 2959–2963 (1976) [17] Sasisekharan, V., Pattabiraman, N., Gupta, G.: Some implications of an alternative structure for DNA.Proc. Natl. Acad. Sci. USA 75, 4092–4096 (1978) [18] Stettler, V. H., Weber, H., Koller, T., Weissmann, C.: Preparation and characterization of form V DNA, the duplex DNA resulting from association of complementary circular single- stranded DNA.J. Molec. Biology 131, 21–40 (1979) [19] Wang, A. H.-J., Quigley, G. J., Kolpak, F. J., Crawford, J. L., Van Boom, J. H., Van der Marel, G., Rich, A.: Molecular structure of a left-handed double helical DNA fragment at atomic resolution.Nature 282, 680–686 (1979) [20] Wang, J. C.: Variation of the average rotation angle of the DNA helix and the superhelical turns of covalently closed cyclic {\(\lambda\)} DNA.J. Mol. Biology 43, 25–39 (1969) [21] Wang, J. C.: The degree of unwinding of the DNA helix by ethidium I. Titration of twisted PM2 DNA molecules in alkaline cesium chloride density gradients.J. Mol. Biol. 89, 783–801 (1974) [22] Wang, J. C.: Helical repeat of DNA in solution.Proc. Natl. Acad. Sci. USA 76, 200–203 (1979) [23] White, J. H.: Self-linking and the Gauss integral in higher dimensions.Amer. J. of Math. 91, 693–728 (1969) · Zbl 0193.50903 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.