×

zbMATH — the first resource for mathematics

Categorical positive Horn theories. (English. Russian original) Zbl 0448.03017
Algebra Logic 18, 31-49 (1979); translation from Algebra Logika 18, 47-72 (1979).

MSC:
03C05 Equational classes, universal algebra in model theory
03C35 Categoricity and completeness of theories
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] A. I. Mal’tsev, Algebraic Systems [in Russian], Nauka (1970).
[2] Yu. L. Ershov, E. A. Palyutin, and M. A. Taitslin, Mathematical Logic [in Russian], Novosibirsk State Univ. (1973).
[3] A. I. Abakumov, E. A. Palyutin, M. A. Taitslin, and Yu. E. Shishmarev, ”Categorical quasivarieties,” Algebra Logika,11, No. 1, 3–38 (1972).
[4] E. A. Palyutin, ”On complete quasivarieties,” Algebra Logika,11, No. 6, 689–693 (1972). · Zbl 0264.08002
[5] E. A. Palyutin, ”On categorical quasivarieties of arbitrary signature,” Sib. Mat. Zh.,14, No. 6, 1285–1303 (1973). · Zbl 0279.02029
[6] E. A. Palyutin, ”Description of categorical quasivarieties,” Algebra Logika,14, No. 2, 145–185 (1975). · Zbl 0319.08004
[7] A. Lachlan, ”Complete varieties of algebras,” Notices Am. Math. Soc.,19, No. 5, 598 (1972).
[8] J. T. Baldwin and A. H. Lachlan, ”On universal Horn classes categorical in some infinite power,” Algebra Universalis,3, No. 1, 98–111 (1973). · Zbl 0272.02078 · doi:10.1007/BF02945108
[9] S. Shelah, ”Categoricity of uncountable theories,” Proc. Tarski Symposium (Proc. Symp. Pure Math., Vol. XXV, Univ. Calif., Berkeley, CA, 1971), Amer. Math. Soc., Providence, RI (1974), pp. 187–204.
[10] S. Shelah, ”Stability, the f.c.p. and superstability; model-theoretic properties of formulas in first-order theory,” Ann. Math. Logic,3, 271–362 (1971). · Zbl 0281.02052 · doi:10.1016/0003-4843(71)90015-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.