×

zbMATH — the first resource for mathematics

Operatorenkalkül über freien Monoiden II: Binomialsysteme. (German) Zbl 0448.05005

MSC:
05A15 Exact enumeration problems, generating functions
16W60 Valuations, completions, formal power series and related constructions (associative rings and algebras)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Baron, G., Kirschenhofer, P.: Operatorenkalkül über freien Monoiden I: Strukturen. Mh. Math.91, 89-103 (1981). · Zbl 0447.05006
[2] Garsia, A. M., Joni, S. A.: A new expression for umbral operators and power series inversion. Proc. AMS64, 179-185 (1974). · Zbl 0376.05003
[3] Henle, M.: Binomial enumeration on dissects. Trans. AMS202, 1-39 (1975). · Zbl 0303.05013
[4] Hofbauer, J.: Beiträge zu Rota’s Theorie der Folgen von Binomialtyp. S.-B. Österr: Akad. Wiss. Math. Nat. Kl. II/187, 437-489 (1978). · Zbl 0437.05004
[5] Michor, P.: Contributions to finite operator calculus in several variables. J. Comb. Inf. Syst. Sc.4, 39-65 (1979). · Zbl 0403.05004
[6] Roman, St. M., Rota, G.-C.: The umbral calculus. Adv. Math.27, 95-188 (1978). · Zbl 0375.05007
[7] Rota, G.-C., Kahaner, D., Odlyzko, A.: On the foundations of combinatorial theory VIII: Finite operator calculus. J. Math. Anal. Appl.42, 684-760 (1973). · Zbl 0267.05004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.