zbMATH — the first resource for mathematics

Schwarz lemma for circular domains and its applications. (English) Zbl 0448.32011

32H99 Holomorphic mappings and correspondences
32A30 Other generalizations of function theory of one complex variable (should also be assigned at least one classification number from Section 30-XX)
30C80 Maximum principle, Schwarz’s lemma, Lindelöf principle, analogues and generalizations; subordination
32A07 Special domains in \({\mathbb C}^n\) (Reinhardt, Hartogs, circular, tube) (MSC2010)
Full Text: DOI
[1] R. R. Simha, ?Holomorphic mappings between balls and polydiscs,? Proc. Am. Math. Soc.,54, No. 1, 241-242 (1976). · Zbl 0326.32003 · doi:10.1090/S0002-9939-1976-0402100-5
[2] B. V. Shabat, Introduction to Complex Analysis [in Russian], Nauka, Moscow (1969). · Zbl 0188.37902
[3] S. I. Pinchuk, ?On analytic continuation of holomorphic mappings,? Mat. Sb.,98, No. 3, 416-435 (1975).
[4] H. Oeljeklans, ?Über die Automorphismengruppe von Ellipsoiden,? Math. Ann.,206, No. 3, 225-236 (1973). · Zbl 0268.32015 · doi:10.1007/BF01429210
[5] S. M. Webster, ?On the mapping problem for algebraic real hypersurfaces,? Notices Am. Math. Soc.,24, No. 5, 473 (1977). · Zbl 0348.32005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.