×

zbMATH — the first resource for mathematics

On elliptic operators in \(R^n\). (English) Zbl 0448.35042

MSC:
35J45 Systems of elliptic equations, general (MSC2000)
35J30 Higher-order elliptic equations
35G05 Linear higher-order PDEs
35R20 Operator partial differential equations (= PDEs on finite-dimensional spaces for abstract space valued functions)
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
47A53 (Semi-) Fredholm operators; index theories
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Breuer M., Jour. Math. Mech. 14 (2) pp 299– (1965)
[2] Calderon A. P., Amer. Jour. Math. 2 pp 901– (1957) · Zbl 0081.33502 · doi:10.2307/2372441
[3] Cantor M., Indiana Univ. Math. Jour. 24 (9) pp 897– (1975) · Zbl 0441.46028 · doi:10.1512/iumj.1975.24.24072
[4] Cantor M., Compositio Math. 38 pp 3– (1979)
[5] Cordes H.O., Lund Lecture Motes (1971)
[6] Cordes H.O., Amer. Jour. Math. 90 pp 681– (1968) · Zbl 0169.47105 · doi:10.2307/2373478
[7] Herman E., Jour. Math. Mech. pp 147– (1966)
[8] Illner R., Comm. Partial Diff. Eq. 2 (4) pp 359– (1977) · Zbl 0352.47021 · doi:10.1080/03605307708820034
[9] Lockhart R., Ph.D. thesis from the University of Illinois at Urbana (1979)
[10] McOwen R., Comm. Pure Appl. Math. 32 pp 783– (1979) · Zbl 0426.35029 · doi:10.1002/cpa.3160320604
[11] Nirenberg L., Jour. Math. Anal. Appl. 42 pp 271– (973) · Zbl 0272.35029 · doi:10.1016/0022-247X(73)90138-8
[12] Plis A., Comm. Pure Appl. Math. 2 (1961) pp 617– (599)
[13] Seeley R.T., Jour. Math. Anal. Appl. 1 pp 289– (1963) · Zbl 0133.37603 · doi:10.1016/0022-247X(63)90054-4
[14] Seeley R.T., Trans. Amer. Math. Soc. 117 pp 167– (1965) · doi:10.1090/S0002-9947-1965-0173174-1
[15] Stein E.M., Proc. Amer. Math. 8 pp 250– (1957) · doi:10.1090/S0002-9939-1957-0088606-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.