Teleman, Nicolae Global analysis on PL-manifolds. (English) Zbl 0448.57007 Trans. Am. Math. Soc. 256, 49-88 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 3 Documents MSC: 57Q99 PL-topology 58A99 General theory of differentiable manifolds 58A10 Differential forms in global analysis 58A12 de Rham theory in global analysis 58A14 Hodge theory in global analysis Keywords:global analysis on PL-manifolds; combinatorial structures; existence of distance functions and of Riemannian metrics; smoothing; geometric realization of PL(m)/O(m); Sullivan’s complex of piecewise differentiable forms; Sobolev spaces; Hodge-type decomposition theorem PDF BibTeX XML Cite \textit{N. Teleman}, Trans. Am. Math. Soc. 256, 49--88 (1979; Zbl 0448.57007) Full Text: DOI References: [1] Shmuel Agmon, Lectures on elliptic boundary value problems, Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. · Zbl 0142.37401 [2] M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546 – 604. · Zbl 0164.24301 · doi:10.2307/1970717 · doi.org [3] Pierre Bidal and Georges de Rham, Les formes différentielles harmoniques, Comment. Math. Helv. 19 (1946), 1 – 49 (French). · Zbl 0063.00378 · doi:10.1007/BF02565944 · doi.org [4] Avner Friedman, Partial differential equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. · Zbl 0224.35002 [5] W. V. D. Hodge, The theory and applications of harmonic integrals, Cambridge, at the University Press, 1952. 2d ed. · Zbl 0048.15702 [6] Lars Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. · Zbl 0271.32001 [7] James Munkres, Obstructions to imposing differentiable structures, Illinois J. Math. 8 (1964), 361 – 376. · Zbl 0126.18701 [8] J. Milnor, Topological manifolds and smooth manifolds, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 132 – 138. J. Milnor, Microbundles. I, Topology 3 (1964), no. suppl. 1, 53 – 80. · Zbl 0124.38404 · doi:10.1016/0040-9383(64)90005-9 · doi.org [9] Richard S. Palais, Seminar on the Atiyah-Singer index theorem, With contributions by M. F. Atiyah, A. Borel, E. E. Floyd, R. T. Seeley, W. Shih and R. Solovay. Annals of Mathematics Studies, No. 57, Princeton University Press, Princeton, N.J., 1965. · Zbl 0137.17002 [10] G. de Rham, Variétés différentiables, formes, currants, formes harmonique, Actualités Sci. Indus., no. 1222, Hermann, Paris, 1960. · Zbl 0089.08105 [11] I. M. Singer, Future extensions of index theory and elliptic operators, Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970) Princeton Univ. Press, Princeton, N.J., 1971, pp. 171 – 185. Ann. of Math. Studies, No. 70. [12] Laurent Schwartz, Théorie des distributions, Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. IX-X. Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966 (French). · Zbl 0962.46025 [13] D. Sullivan, Differential forms and the topology of manifolds, Proc. Tokyo Conf. on Manifolds, Univ. of Tokyo Press, Tokyo, 1973. · Zbl 0319.58005 [14] -, Geometric topology. I, M.I.T. Notes, 1969. [15] Noboru Tanaka, A differential geometric study on strongly pseudo-convex manifolds, Kinokuniya Book-Store Co., Ltd., Tokyo, 1975. Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 9. · Zbl 0331.53025 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.