zbMATH — the first resource for mathematics

Reverse convex programming. (English) Zbl 0448.90044

90C25 Convex programming
26A51 Convexity of real functions in one variable, generalizations
90C30 Nonlinear programming
65K05 Numerical mathematical programming methods
Full Text: DOI
[1] M. Avriel and A. C. Williams, Complementary geometric programming,SIAM J. Appl. Math. 19, 125-141, 1970. · Zbl 0319.90035 · doi:10.1137/0119011
[2] M. Avriel and A. C. Williams, An extension of geometric programming with applications in engineering optimization,J. Eng. Math. 5, 187-194, 1971. · doi:10.1007/BF01535411
[3] E. Balas, Intersection cuts?a new type of cutting planes for integer programming,Operations Research 19, 19-39, 1971. · Zbl 0219.90035 · doi:10.1287/opre.19.1.19
[4] P. P. Bansal and S. E. Jacobsen, Characterization of local solutions for a class of nonconvex programs,J. Optimization Theory and Applications, Vol. 15, No. 5, May 1975. · Zbl 0281.90078
[5] P. P. Bansal and S. E. Jacobsen, An algorithm for optimizing network flow capacity under economies-of-scale,J. Optimization Theory and Applications, Vol. 15, No. 5, May 1975. · Zbl 0281.90077
[6] R. Carvajal-Moreno,minimization of Concave Functions Subject to Linear Constraints, Operations Research Center Report ORC72-3, University of California, Berkeley, 1972.
[7] F. Glover and D. Klingman, Concave programming applied to a special class of 0-1 integer programs,Operations Research 21, 135-140, 1973. · Zbl 0265.90033 · doi:10.1287/opre.21.1.135
[8] F. John, Extremum Problems with Inequalities as Subsidiary Conditions, In:Studies and Essays: Courant Anniversary Volume, (eds.) K. O. Friedrichs, O. E. Neugebauer, J. J. Stoker, Interscience Publishers, New York, 1948.
[9] R. J. Hillestad, Optimization problems subject to a budget constraint with economies of scale,Operations Research 23,No. 6, Nov?Dec. 1975. · Zbl 0335.90039
[10] J. E. Kelley, The cutting plane method for solving convex programs,J. SIAM 8, 703-712, 1960. · Zbl 0098.12104
[11] O. L. Mangasarian,Nonlinear Programming, McGraw-Hill, New York, 1969.
[12] R. Meyer, The validity of a family of optimization methods,SIAM J. CONTROL 8, 41-54, 1970. · Zbl 0194.20501 · doi:10.1137/0308003
[13] J. B. Rosen, Iterative solution of nonlinear optimal control problems,SIAM J. Control 4, 223-244, 1966. · Zbl 0229.49025 · doi:10.1137/0304021
[14] J. Stoer and C. Witzgall,Convexity and Optimization in Finite Dimensions, Springer-Verlag, New York, 1970. · Zbl 0203.52203
[15] H. Tuy, Concave programming under linear constraints,Soviet Mathematics 5, 1437-1440, 1964. · Zbl 0132.40103
[16] U. Ueing, A combinatorial Method to Compute a Global Solution of Certain Non-Convex Optimization Problems, In:Numerical Methods for Non-Linear Optimization, (ed.) F. A. Lootsma, 223-230, Academic Press, 1972.
[17] P. B. Zwart, Computational Aspects on the Use of Cutting Planes in Global Optimization, In:Proceedings of Association for Computing Machinery, 457-465, 1971.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.