Categories de Möbius et fonctorialites: un cadre général pour l’inversion de Möbius. (French) Zbl 0449.05004


05A15 Exact enumeration problems, generating functions
18A10 Graphs, diagram schemes, precategories
Full Text: DOI


[1] Cartier, P.; Foata, D., Problèmes combinatoires de commutation et réarrangements, (Lecture Notes in Mathematics, No. 85 (1969), Springer-Verlag: Springer-Verlag New York/Berlin) · Zbl 0186.30101
[2] Cashwell, E. D.; Everett, C. J., The ring of number theoretic functions, Pacific J. Math., 9, 975-985 (1959) · Zbl 0092.04602
[3] Content, M., Les catégories de Möbius, (Mémoire de maîtrise (1977), Université du Québec à Montréal)
[5] Doubilet, P.; Rota, G.-C; Stanley, R. P., The idea of generating function, (Rota, G.-C, Finite Operator Calculus (1975), Academic Press: Academic Press New York), 83-134
[6] Kelley, J. L., General Topology, ((1955), Van Nostrand: Van Nostrand Princeton, N.J), 65-66, Chap. 2
[7] Lemay, F., Catégories de Möbius, algèbres d’incidence et fonctorialités, (Mémoire de maîtrise (1978), Université du Québec à Montréal)
[8] Leroux, P., Les catégories de Möbius, Cahiers de topologie et géométrie différentielle, 16, 280-282 (1975) · Zbl 0364.18001
[9] MacLane, S., Categories for the Working Mathematician (1971), Springer-Verlag: Springer-Verlag New York/Berlin
[10] MacMahon, P. A., (Combinatorial Analysis, Vol. I (1915), Cambridge Univ. Press: Cambridge Univ. Press London/New York), réimpression: Chelsea, New York, 1960 · JFM 45.1271.01
[11] Mitchell, B. M., Rings with several objects, Advances in Math., 8, 1-161 (1972) · Zbl 0232.18009
[12] Nijenhuis, A.; Wilf, M. S., Combinatorial Algorithms (1975), Academic Press: Academic Press New York · Zbl 0343.68004
[13] Rota, G.-C, On the foundations of combinatorial theory, I: Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 2, 340-368 (1964), Heft 4 · Zbl 0121.02406
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.