zbMATH — the first resource for mathematics

On the local Langlands conjecture for central division algebras of index p. (English) Zbl 0449.12009

11S37 Langlands-Weil conjectures, nonabelian class field theory
11S45 Algebras and orders, and their zeta functions
Full Text: DOI EuDML
[1] Buhler, J.P.: Icosahedral Galois representations. Lecture Notes 654, Chapter 2. Berlin Heidelberg New York: Springer, 1978 · Zbl 0374.12002
[2] Howe, R.: Kirillov Theory for Compactp-adic Groups. Pacific J. Math.73, 365-381 (1977) · Zbl 0385.22007
[3] Iwasawa, K.: On Galois groups of local fields, Trans. Amer. Math. Soc.80, 448-469 (1955) · Zbl 0074.03101 · doi:10.1090/S0002-9947-1955-0075239-5
[4] Koch, H.: Classification of the Primitive Representations of the Galois Group of Local Fields. Invent. math.40, 195-216 (1977) · Zbl 0376.12003 · doi:10.1007/BF01390345
[5] Koch, H., Zink, E.-W.: Zur Korrespondenz von Darstellungen der Galoisgruppen und der zentralen Divisionsalgebren über lokalen Körpern (Der zahme Fall). Preprint R-03/79, Berlin: ZIMM, Akademie der Wissenschaften der DDR, 1979 · Zbl 0402.12011
[6] Krasner, M.: Nombre des extensions d’un degré donné d’un corpsp-adique. Les tendances géométriques en algèbre et théorie des nombres, Colloque C.N.R.S.143, 143-169 (1966)
[7] Langlands, R.P.: Problems in the Theory of Automorphic Forms. Lectures on Modern Analysis and Applications, Lecture Notes 170. Berlin Heidelberg New York: Springer 1970 · Zbl 0225.14022
[8] Serre, J-P.: Corps locaux, Paris: Hermann, 1962 · Zbl 0137.02601
[9] Tunnell, J.B.: On the local Langlands conjecture forGL(2). Invent. math.46, 179-200 (1978) · Zbl 0385.12006 · doi:10.1007/BF01393255
[10] Weil, A.: Exercises dyadiques. Invent. Math.27, 1-22 (1974) · Zbl 0307.12017 · doi:10.1007/BF01389962
[11] Zink, E.-W.: Counting primitive projective representations of local Galois groups, Preprint 1978
[12] Zink, E.-W.: Ergänzungen zu Weil’s Exercises dyadiques Math. Nachr.92, 163-183 (1979) · Zbl 0438.12006 · doi:10.1002/mana.19790920116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.