×

zbMATH — the first resource for mathematics

Lifting smooth homotopies of orbit spaces. (English) Zbl 0449.57009

MSC:
57S15 Compact Lie groups of differentiable transformations
20G05 Representation theory for linear algebraic groups
15A75 Exterior algebra, Grassmann algebras
58A35 Stratified sets
58A40 Differential spaces
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] E. M. Andreev, E. B. Vinberg, andA. G. Elashvili, Orbits of greatest dimension in semi-simple linear Lie groups,Functional Anal. Appl.,1 (1967), 257–261. · Zbl 0176.30301
[2] E. Bierstone, Lifting isotopies from orbit spaces,Topology,14 (1975), 245–252. · Zbl 0317.57015
[3] A. Borel,Linear Algebraic Groups, New York, Benjamin (1969). · Zbl 0206.49801
[4] N. Bourbaki,Algèbre, 3rd ed., Paris, Hermann (1962). · Zbl 0142.00102
[5] ——,Groupes et Algèbres de Lie, Paris, Hermann (1968). · Zbl 0155.05202
[6] G. E. Bredon, Fixed point sets and orbits of complementary dimension,in Seminar on Transformation Groups,Ann. of Math. Studies, No.46, Princeton, Princeton Univ. Press (1960), 195–231.
[7] ——,Introduction to Compact Transformation Groups, New York, Academic Press (1972). · Zbl 0246.57017
[8] —,Biaxial Actions, mimeographed notes, Rutgers University (1974).
[9] C. Chevalley,Theory of Lie Groups, Princeton, Princeton University Press (1946). · Zbl 0063.00842
[10] ——,Théorie des Groupes de Lie, t. III, Paris, Hermann (1955).
[11] ——, Invariants of finite groups generated by reflections,Amer. J. Math.,77 (1955), 778–782. · Zbl 0065.26103
[12] M. Davis,Smooth Actions of the Classical Groups, thesis, Princeton University (1974).
[13] —,Regular O n , U n ,and Sp n manifolds, to appear.
[14] ——, Smooth G-manifolds as collections of fiber bundles,Pacific. J. Math.,77 (1978), 315–363. · Zbl 0403.57002
[15] —— andW. C. Hsiang, Concordance classes of U n and Sp n actions on homotopy spheres,Ann. of Math.,105 (1977), 325–341. · Zbl 0345.57018
[16] —, —, andJ. Morgan,Concordance classes of regular O(n)-actions on homotopy spheres, to appear. · Zbl 0453.57026
[17] J. Dieudonné, Topics in Local Algebra,Notre Dame Mathematical Lectures, No.10, Notre Dame, University of Notre Dame Press (1967). · Zbl 0193.00101
[18] —— andJ. Carrell,Invariant Theory, Old and New, New York, Academic Press (1971).
[19] E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras,Amer. Math. Soc. Transl.,6 (1957), 111–244. · Zbl 0077.03404
[20] ——, Maximal subgroups of the classical groups,Amer. Math. Soc. Transl.,6 (1957), 245–378. · Zbl 0077.03403
[21] A. G. Elashvili, Canonical form and stationary subalgebras of points of general position for simple linear Lie groups,Functional Anal. Appl.,6 (1972), 44–53. · Zbl 0252.22015
[22] ——, Stationary sublgebras of points of the common state for irreducible linear Lie groups,Functional Anal. Appl.,6 (1972), 139–148. · Zbl 0252.22016
[23] D. Erle andW. C. Hsiang, On certain unitary and symplectic actions with three orbit types,Amer. J. Math.,94 (1972), 289–308. · Zbl 0239.57021
[24] G. Glaeser, Racine carrée d’une fonction différentiable,Ann. Inst. Fourier,13 (1963), 203–210. · Zbl 0128.27903
[25] M. Golubitsky andV. Guillemin, Stable Mappings and Their Singularities,Graduate Texts in Mathematics,14, New York, Springer-Verlag, 1973. · Zbl 0294.58004
[26] H. Grauert, On Levi’s problem and the mbedding of real-analytic manifolds,Ann. of Math.,68 (1958), 460–472. · Zbl 0108.07804
[27] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires,Mem. Amer. Math. Soc.,16 (1955). · Zbl 0123.30301
[28] —,Cohomologie Locale des Faisceaux Cohérents et Théorèmes de Lefschetz Locaux et Globaux (SGA 2), Amsterdam, North-Holland (1968).
[29] ——, Local Cohomolgoy (Notes by R. Hartshorne),Lecture Notes in Mathematics, No.41, New York, Springer-Verlag (1967).
[30] R. C. Gunning andH. Rossi,Analytic Functions of Several Complex Variables, Englewood Cliffs, Prentice-Hall (1965). · Zbl 0141.08601
[31] G. Hochschild,The Structure of Lie Groups, San Francisco, Holden-Day (1965). · Zbl 0131.02702
[32] —— andG. D. Mostow, Representations and representative functions on Lie groups III,Ann. of Math.,70 (1957), 85–100. · Zbl 0111.03201
[33] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes,Ann. of Math.,96 (1972), 318–337. · Zbl 0237.14019
[34] —— andJ. A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci,Amer. J. Math.,93 (1971), 1020–1058. · Zbl 0244.13012
[35] —— andJ. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay,Adv. in Math.,13 (1974), 115–175. · Zbl 0289.14010
[36] W. C. Hsiang andW. Y. Hsiang, Differentiable actions of compact connected classical groups: I,Amer. J. Math.,89 (1967), 705–786. · Zbl 0184.27204
[37] ——, Differentiable actions of compact connected classical groups: II,Ann. of Math.,92 (1970), 189–223. · Zbl 0205.53902
[38] W. Y. Hsiang, On the principal orbit type and P. A. Smith theory of SU(p) actions,Topology,6 (1967), 125–135. · Zbl 0166.19303
[39] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory,Graduate Texts in Mathematics,9, New York, Springer-Verlag (1972). · Zbl 0254.17004
[40] ——, Linear Algebraic Groups,Graduate Texts in Mathematics,21, New York, Springer-Verlag (1975). · Zbl 0325.20039
[41] K. Jänich, Differenzierbare Mannigfaltigkeiten mit Rand als Orbiträume differenzierbarer G-Mannigfaltigkeiten ohne Rand,Topology,5 (1966), 301–320. · Zbl 0153.53703
[42] ——, On the classification of O(tn)-manifolds,Math. Ann.,176 (1968), 53–76. · Zbl 0153.53801
[43] B. Kostant, Lie group representations on polynomial rings,Amer. J. Math.,85 (1963), 327–402. · Zbl 0124.26802
[44] M. Krämer, Eine Klassifikation bestimmter Untergruppen kompakter zusammenhängender Liegruppen,Comm. in Alg.,3 (1975), 691–737. · Zbl 0309.22013
[45] —, Some tips on the decomposition of tensor product representations of compact connected Lie groups, to appear inReports on Mathematical Physics. · Zbl 0392.22007
[46] S. Lang,Algebra, Reading, Addison-Wesley (1965).
[47] J. A. Leslie, On a differentiable structure for the group of diffeomorphisms,Topology,6 (1967), 263–271, · Zbl 0147.23601
[48] S. Łojasiewicz, Ensembles Semi-analytiques,Lecture Notes, I.H.E.S. (1965).
[49] D. Luna, Sur les orbites fermées des groupes algébriques réductifs,Invent. Math.,16 (1972), 1–5. · Zbl 0249.14016
[50] ——, Slices étales,Bull. Soc. Math. France, Mémoire33 (1973), 81–105.
[51] ——, Adhérences d’orbite et invariants,Invent. Math.,29 (1975), 231–238. · Zbl 0315.14018
[52] ——, Fonctions différentiables invariantes sous l’opération d’un groupe réductif,Ann. Inst. Fourier,26 (1976), 33–49.
[53] B. Malgrange,Division des distributions, Séminaire L. Schwartz (1959–1960), exposés 21–25.
[54] ——,Ideals of Differentiable Functions, Bombay, Oxford University Press (1966). · Zbl 0177.17902
[55] J. N. Mather, Stratifications and mappings, inDynamical Systems, New York, Academic Press (1973), 195–232.
[56] ——, Differentiable invariants,Topology,16 (1977), 145–155. · Zbl 0376.58002
[57] G. D. Mostow, Self-adjoint groups,Ann. of Math.,62 (1955), 44–55. · Zbl 0065.01404
[58] D. Mumford, Geometric Invariant Theory,Erg. der Math., Bd34, New York, Springer-Verlag (1965). · Zbl 0147.39304
[59] —,Introduction to Algebraic Geometry, preliminary version, Harvard University (1966).
[60] R. Narasimhan, Introduction to the Theory of Analytic Spaces,Lecture Notes in Mathematics, No.25, New York, Springer-Verlag (1966). · Zbl 0168.06003
[61] R. S. Palais, The classification of G-spaces,Mem. Amer. Math. Soc., No.36 (1960). · Zbl 0119.38403
[62] ——, Slices and equivariant embeddings,in Seminar on Transformation Groups,Ann. of Math. Studies, No.46, Princeton, Princeton Univ. Press (1960), 101–115.
[63] R. Richardson, Principal orbit types for algebraic transformation spaces in characteristic zero,Invent. Math.,16 (1972), 6–14. · Zbl 0242.14010
[64] F. Ronga, Stabilité locale des applications équivariantes,in Differential Topology and Geometry, Dijon 1974Lecture Notes in Mathematics, No.484, New York, Springer-Verlag (1975), 23–35.
[65] M. Schlessinger, Rigidity of quotient singularities,Invent. Math.,14 (1971), 17–26. · Zbl 0232.14005
[66] G. Schwarz, Smooth functions invariant under the action of a compact Lie group,Topology,14 (1975), 63–68. · Zbl 0297.57015
[67] ——, Representations of simple Lie groups with regular rings of invariants,Invent. Math.,49 (1978), 167–191. · Zbl 0391.20032
[68] ——, Representations of simple Lie groups with a free module of covariants,Invent. Math.,50 (1978), 1–12. · Zbl 0391.20033
[69] A. Seidenberg, A new decision method for elementary algebra,Ann. of Math.,60 (1954), 365–374. · Zbl 0056.01804
[70] J.-P. Serre. Géométrie algébrique et géométrie analytique,Ann. Inst. Fourier,6 (1955–1956), 1–42.
[71] ——, Algèbre Locale. Multiplicités,Lecture Notes in Mathematics, No.11, New York, Springer-Verlag (1965).
[72] Y. T. Siu, Techniques of Extension of Analytic Objects,Lecture Notes in Pure and Applied Mathematics, No.8, New York, Marcel Dekker (1974). · Zbl 0294.32007
[73] J.-Cl. Tougeron, Idéaux de Fonctions Différentiables,Erg. der Math., Bd71, New York, Springer-Verlag (1972).
[74] D. Vogt, Charakterisierung der Unterräume vons, Math. Z.,155 (1977), 109–117. · Zbl 0337.46015
[75] ——, Subspaces and quotient spaces of (s), in Functional Analysis: Surveys and Recent Results,North-Holland Math. Studies, Vol.27;Notas de Mat., No.63, Amsterdam, North-Holland (1977), 167–187.
[76] — andM. Wagner,Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau, to appear.
[77] Th.Vust,Covariants de groupes algébriques réductifs, thèse, Univ. de Genève (1974).
[78] ——, Opération de groupes réductifs dans un type de cônes presque homogènes,Bull. Soc. Math. France,102 (1974), 317–334. · Zbl 0332.22018
[79] G. S. Wells,Isotopies of semianalytic spaces of finite type, to appear. · Zbl 0405.58022
[80] H. Weyl,The Classical Groups, 2nd ed., Princeton, Princeton University Press, 1946. · Zbl 1024.20502
[81] H. Whitney,Complex Analytic Varieties, Reading, Addison-Wesley (1972). · Zbl 0265.32008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.