zbMATH — the first resource for mathematics

Smoluchowski’s theory of coagulation in colloids holds rigorously in the Boltzmann-Grad-limit. (English) Zbl 0449.60074

60K35 Interacting random processes; statistical mechanics type models; percolation theory
Full Text: DOI
[1] Berresford, G.C.: A class of Nonlinear Partial Differential Equations and the Associated Markov Process. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 33, 237-251 (1975/76) · Zbl 0315.60042 · doi:10.1007/BF00534776
[2] Bramson, M., Griffeath, D.: Clustering and Dispersion Rates for Some Interacting Particle Systems on ?. Preprint 1978 · Zbl 0429.60098
[3] Bramson, M., Griffeath, D.: Asymptotics for Interacting Systems on ?d. Preprint 1979 · Zbl 0422.60065
[4] Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Second edition, Oxford: Clarendon Press 1959 · Zbl 0029.37801
[5] Chandrasekhar, S.: Stochastic Problems in Physics and Astronomy. Reviews of Modern Physics 15, 1-89 (1943). Reprinted in: Wax, N. (ed.): Selected papers on noise and stochastic processes. New York: Dover 1954 · Zbl 0061.46403 · doi:10.1103/RevModPhys.15.1
[6] Itô, K., McKean, H.P. Jr.: Diffusion Processes and their Sample Paths (second printing). New York: Springer 1974
[7] Kac, M.: Foundations of Kinetic Theory. Proc. Third Berkeley Sympos. Math. Statist. Probab. 3, 171-197. Univ. Calif. 1956 · Zbl 0072.42802
[8] Kac, M.: Some Probabilistic Aspects of the Boltzmann Equation. In: Acta Physica Austriaca, Suppl. X. The Boltzmann Equation. Theory and Applications (ed. Cohen and Thirring) pages 397-400. Wien: Springer-Verlag 1973
[9] Kac, M.: Probabilistic methods in some problems of scattering theory. Rocky Mountain J. Math. 4, 511-537 (1974) · Zbl 0314.47006 · doi:10.1216/RMJ-1974-4-3-511
[10] Lanford, O.E. III: Time Evolution of Large Classical systems. In: Danamical Systems, Theory and Applications, ed. J. Moser. Lecture Notes in Physics 38 (in particular p. 70-111). Berlin Heidelberg New York: Springer 1975 · Zbl 0329.70011
[11] Lanford, O.E. III: On the derivation of the Boltzmann Equation. Astérisque 40, 117-137 (1976)
[12] Lanford, O.E. III: Lectures at the 3ième cycle. Lausanne (1978), unpublished
[13] Lang, R., Nguyen Xuan Xanh: Smoluchowski’s Theory of Coagulation in Colloids holds rigorously in the Boltzmann-Grad-Limit. Proceedings of the International Colloquium on Random Fields, held in Esztergom, June 1979. To appear
[14] McKean, H.P. Jr.: Fluctuations in the kinetic theory of gases. Comm. Pure Appl. Math. 28, 435-455 (1975) · doi:10.1002/cpa.3160280402
[15] Neveu, J.: Processus Ponctuels. In: Ecole d’Eté de Probabilités de Saint-Flour VI, ed. P.L. Hennequin. Lecture Notes in Mathematics 598 Berlin Heidelberg New York: Springer 1977
[16] Port, S.C., Stone, Ch.J.: Brownian Motion and Classical Potential Theory. New York: Academic Press 1978 · Zbl 0413.60067
[17] Rauch, J., Taylor, M.: Potential and Scattering Theory in Wildly Perturbed Domains. J. Funct. Anal. 18, 27-59 (1975) · Zbl 0293.35056 · doi:10.1016/0022-1236(75)90028-2
[18] Smoluchowski, M. v.: Drei Vorträge über Diffusion, Brown’sche Molekularbewegung und Koagulation von Kolloidteilchen. Phys. Z. XVII, 557-571 und 585-599 (1916)
[19] Smoluchowski, M. v.: Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z. physikalische Chemie 92, 129-168 (1917)
[20] Spitzer, F.: Electrostatic Capacity, Heat Flow and Brownian Motion. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 3, 110-121 (1964) · Zbl 0126.33505 · doi:10.1007/BF00535970
[21] Spohn, H.: Kinetic Equations from Hamiltonian Dynamics: The Markovian Limit. Lecture Notes, University of Leuven, 1979 · Zbl 0399.60082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.