zbMATH — the first resource for mathematics

Minimal realization in companion forms. (English) Zbl 0449.93012

93B20 Minimal systems representations
93B10 Canonical structure
93B15 Realizations from input-output data
93C99 Model systems in control theory
93C05 Linear systems in control theory
93B40 Computational methods in systems theory (MSC2010)
Full Text: DOI
[1] Kalman, R.E.; Falb, P.L.; Arbib, M.A., (), 237-339
[2] Silverman, L.M., Realization of linear dynamical systems, IEEE trans. aut. control, Vol. AC-16, 554-567, (1971)
[3] Mayne, D.Q., Computational procedure for the minimum realization of transfer function matrices, Proc. IEE, Vol. 115, 1363-1368, (Sept. 1968)
[4] Gori-Giorgi, C.; Isidori, A., A new algorithm for the irreducible realization of a rational matrix, Ricerche di automatica, Vol. II, 225-239, (1971)
[5] Wolovich, W.A., (), 77-93
[6] Mital, D.P.; Chen, C.T., Irreducible canonical form realization of rational matrix, Int. J. control, Vol. 18, 881-887, (1973) · Zbl 0269.93012
[7] Kalman, R.E., Irreducible realizations and the degree of a rational matrix, J. SIAM appl. math., Vol. 13, 520-544, (June 1965)
[8] Montes, C.G., Minimum realization of a transfer function matrix in canonical form, IEEE trans. aut. control, Vol. AC-21, 390-401, (1976) · Zbl 0324.93013
[9] Rissanen, J., Realization of matrix sequences, IBM research report, RJ1032, (May 15, 1972)
[10] Rosenbrock, H.H., State-space and multivariable theory, (1970), John Wiley New York · Zbl 0246.93010
[11] Kalman, R.E., Mathematical description of linear dynamical systems, SIAM J. control, Vol. 1, 152-192, (1963) · Zbl 0145.34301
[12] Popov, V.M., Invariant description of linear time invariant controllable systems, SIAM J. control, Vol. 10, 252-264, (1972) · Zbl 0251.93013
[13] Ho, B.L.; Kalman, R.E., Effective construction of linear state-variable models from input-output functions, Regelungstechnik, Vol. 14, 545-548, (1966) · Zbl 0145.12701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.