×

zbMATH — the first resource for mathematics

Fonctions plurisousharmoniques d’exhaustion bornees et domaines taut. (French) Zbl 0451.32012

MSC:
32T99 Pseudoconvex domains
32A07 Special domains in \({\mathbb C}^n\) (Reinhardt, Hartogs, circular, tube) (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Barth, T.: Taut and tight complex manifolds. Proc. AMS24, 429-431 (1970) · Zbl 0191.09403
[2] Barth, T.: Some counterexamples concerning intrinsic distances. Proc. AMS66, n 1, 49-53 (1977) · Zbl 0331.32019
[3] Brelot, M.: Etude des fonctions sous-harmoniques au voisinage d’un point. Paris: Hermann (1934) · Zbl 0009.01902
[4] Bremmermann, H.: Die Holomorphie-Hüllen der Tuben und Halbgebiete. Math. Ann.127, 406-423 (1954) · Zbl 0055.31102
[5] Demailly, J.P.: Différents exemples de fibrés holomorphes non de Stein. Séminaire P. Lelong, H. Skoda 76/77, pp. 15-41. In: Lecture Notes in Mathematics. Vol. 694. Berlin, Heidelberg, New York: Springer 1978
[6] Diederich, K., Fornaess, J.: Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions. Inv. Math.39, 129-141 (1977) · Zbl 0353.32025
[7] Diederich, K., Fornaess, J., Pflug, P.: Convexity in complex analysis. Livre en préparation
[8] Dufresnoy, A.: Sur l’opérateurd? et les fonctions différentiables au sens de Whitney Ann. Inst. Fourier29, 1 229-238 (1979) · Zbl 0387.32011
[9] Grauert, H., Reckziegel, H.: Hermetische Metriken und Normale Familien Holomorpher Abbildungen. Math. Z.89, 108-125 (1965) · Zbl 0135.12503
[10] Hörmander, L.: An introduction to complex analysis in several complex variables. V. Nostrand 1966 · Zbl 0138.06203
[11] Kerzman, N.: Taut manifold and domains of holomorphy in ? n . Notices AMS16, 675-676 (1969)
[12] Kobayashi, S.: Hyperbolic manifolds and holomorphic mappings. New York: Dekker 1970 · Zbl 0207.37902
[13] Königsberger, K.: Über die Holomorphie-Vollständigkeit lokal-trivialer Faserräume. Math. Ann.189, 178-184 (1970) · Zbl 0203.39001
[14] Oka, K.: Sur les fonctions analytiques de plusieurs variables. Tokyo: Iwanamishoten 1961 · Zbl 0095.28003
[15] Range, R.M.: A remark on bounded strictly plurisubharmonic exhaustion functions?à paraitre aux Proc. AMS · Zbl 0474.32009
[16] Richberg, R.: Stetige Streng pseudokonvexe Funktionen. Math. Ann.175, 257-286 (1968) · Zbl 0153.15401
[17] Rosay, J.P.: Un exemple d’ouvert de ?3 taut mais non hyperbolique complet. À paraitre au Pac. J. · Zbl 0485.32013
[18] Rossi, H.: A Docquier Grauert Lemma for strictly pseudo-convex domains in complex manifolds. Rocky Mountain Math. J. (1975)
[19] Skoda, H.: Fibrés holomorphes à base et à fibre de Stein. Inv. Math.43, 97-107 (1977) · Zbl 0365.32018
[20] Stehlé, J.L.: Fonctions plurisousharmoniques et convexité holomorphe de certains fibrés analytiques, pp. 155-180 Séminaire Lelong 73-74. Lecture Notes in Mathematics, Vol. 474. Berlin Heidelberg, New York: Springer 1975
[21] Wu, H.: Normal families of holomorphic mappings. Acta Math.119 193-233 (1967) · Zbl 0158.33301
[22] Ermine, J.L.: Conjecture de Serre et espaces hyperconvexes, pp. 124-139. Séminaire Norguet. In: Lecture Notes in Mathematics, Vol. 670. Berlin, Heidelberg, New York: Springer 1978 · Zbl 0392.32007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.