×

Nonlinear equations with coefficients of bounded variation in two space variables. (English) Zbl 0451.35018


MSC:

35F20 Nonlinear first-order PDEs
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Oleinik, O. A., Usp. Mat. Nauk, 12, 3-73 (1957) · Zbl 0080.07701
[2] Oleinik, O. A., Usp. Mat. Nauk, 14, 165-170 (1959) · Zbl 0096.06701
[3] Oleinik, O. A., Naǔcn. Dokl. Vyssh. Shk. Fiz. Mat. Nauki, No. 3, 91-98 (1958) · Zbl 0122.33203
[4] Oleinik, O. A.; Kruzhkov, S. N., Usp. Mat. Nauk, 16, 115-155 (1961)
[5] Conway, E.; Smoller, J., Comm. Pure Appl. Math., 19, 95-105 (1966) · Zbl 0138.34701
[6] Kruzhkov, S. N., Mat. Sb. (Tomsk), 81, 123 (1970)
[7] Vol’pert, A. I., Mat. Sb., 73, 255-302 (1967)
[8] Lax, P. D., Comm. Pure Appl. Math., 7, 159-193 (1954) · Zbl 0055.19404
[9] Lax, P. D., Nonlinear Hyperbolic Systems of Conservation Laws, Nonlinear Problems (1963), Univ. of Wisconsin Press: Univ. of Wisconsin Press Madison · Zbl 0108.28203
[10] Glimm, I., Comm. Pure Appl. Math., 18, 697-715 (1965) · Zbl 0141.28902
[11] Glimm, J.; Marchesin, D.; McBryan, D., Comm. Math. Phys., 74, 1 (1980) · Zbl 0429.76029
[12] Glimm, J.; Marchesin, D.; McBryan, O., J. Comput. Phys., 37, 366 (1980)
[13] Glimm, J.; Marchesin, D.; McBryan, O., Stable and Unstable Fluid Interface Surfaces in Petroleum Reservoir Engineering (1980), Rockefeller Univ. Press, preprint · Zbl 0429.76029
[14] Glimm, J.; Marchesin, D.; McBryan, O., Unstanble Fingers in Two Phase Flow (1980), Rockefeller Univ. Press, preprint · Zbl 0429.76029
[15] Glimm, J.; Marchesin, D.; McBryan, O., A Numerical Method for Two Phase Flow with an Unstable Interface (1980), Rockefeller Univ. Press, preprint · Zbl 0429.76029
[16] Giusti, E., Minimal Surfaces and Functions of Bounded Variation (1977), Australian National Univ. Press: Australian National Univ. Press Canberra · Zbl 0402.49033
[18] de Giorgi, E., Richerche Mat., 36, 95-113 (1955)
[19] Fleming, W. H., Ann. Mat. Pura Appl., 44, 93-104 (1957) · Zbl 0082.26701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.