×

Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques. (French) Zbl 0451.35022


MSC:

35J10 Schrödinger operator, Schrödinger equation
35S05 Pseudodifferential operators as generalizations of partial differential operators
70H05 Hamilton’s equations
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] K. ASADA and D. FUJIWARA, On some oscillatory integral transformation in L2(rn), Japan J. Math., 4 (1978), 299-361. · Zbl 0402.44008
[2] R. BEALS, A general calculus of pseudodifferential operators, Duke Math. J., 42 (1975), 1-42. · Zbl 0343.35078
[3] M.V. BERRY and K.E. MOUNT, Semi-classical approximations in wave mechanics, Rep. Prog. Phys., 35 (1972), 315-397.
[4] J. CHAZARAIN, Spectre d’un hamiltonien quantique et mécanique classique, Comm. in Partial diff. Equat., n° 6 (1980), 595-644. · Zbl 0437.70014
[5] Y. COLIN DE VERDIERE, Spectre joint d’opérateurs pseudodifférentiels qui commutent. I - Le cas non intégrable, Duke Math. J., 46 (1979), 169-182. · Zbl 0411.35073
[6] J.J. DUISTERMAAT, Oscillatory integrals..., Comm. Pure Appl. Math., 27 (1974), 207-281. · Zbl 0285.35010
[7] J.J. DUISTERMAAT and V. GUILLEMIN, Spectrum of elliptic operators and periodic geodesics, Inv. Math., 29 (1975), 39-79. · Zbl 0307.35071
[8] B. GRAMMATICOS and A. VOROS, Semi-classical approximations of nuclear Hamiltonians, I - Spin-independant potentials, Annals of physics, 123 (1979), 359-380.
[9] V. GUILLEMIN and S. STERNBERG, Some problems in integral geometry and some related problems in microlocal analysis, Amer. J. Math., 101 (1979), 915-955. · Zbl 0446.58019
[10] L. HÖRMANDER, The spectral function of an elliptic operator, Acta Math., 121 (1968), 193-218. · Zbl 0164.13201
[11] L. HÖRMANDER, The Weyl calculus of pseudodifferential operators, Comm. Pure Appl. Math., 32 (1979), 359-443. · Zbl 0388.47032
[12] L. HORMANDER, On the asymptotic distribution of eigenvalues of pseudodifferential operators in rn, Arkiv för Math., 17 n° 2 (1979), 296-313. · Zbl 0436.35064
[13] J. LERAY, Analyse lagrangienne et mécanique quantique, Collège de France (1976-1977).
[14] V.P. MASLOV, Théorie des perturbations et méthodes asymptotiques, Dunod, Paris (1972), traduction. · Zbl 0247.47010
[15] A. MESSIAH, Mécanique quantique t. 1, Dunod, Paris (1962).
[16] D. ROBERT, Propriétés spectrales d’opérateurs pseudodifferentiels, Comm. in Partial diff. Equat., 3 (1978), 755-826. · Zbl 0392.35056
[17] M.A. SUBIN, Pseudodifferential operators and spectral theory, Nauka Moskva, 1978. · Zbl 0451.47064
[18] V.N. TULOVSKII and M.A. SUBIN, On the asymptotic distribution of eigen values of pseudodifferential operators in rn, Math. USSR Sbornik, 21 (1973), 565-583. · Zbl 0295.35068
[19] A. VOROS, An algebra of pseudodifferential operators and the asymptotics of quantum mechanics, J. of Funct. Analysis, 29 n° 1 (1978), 104-132. · Zbl 0386.47031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.