×

zbMATH — the first resource for mathematics

Singular continuous measures in scattering theory. (English) Zbl 0451.47013
Summary: Examples are presented of potentials \(V\) for which \(-\frac{d^2}{dr^2}+V(r)\) in \(L^2(0, \infty)\) has singular continuous spectrum, and the physical interpretation is discussed.

MSC:
81U05 \(2\)-body potential quantum scattering theory
34L25 Scattering theory, inverse scattering involving ordinary differential operators
47A40 Scattering theory of linear operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kato, T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer 1966 · Zbl 0148.12601
[2] Amrein, W., Georgescu, V.: Helv. Phys. Acta46, 635–658 (1973)
[3] Wilcox, C.: J. Funct. Anal.12, 257–274 (1973) · Zbl 0248.47006 · doi:10.1016/0022-1236(73)90079-7
[4] Pearson, D.: Helv. Phys. Acta48, 639–653 (1975)
[5] Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. I. New York-London: Academic Press 1972 · Zbl 0242.46001
[6] Weidmann, J.: Math. Zeitschr.98, 268–302 (1967) · Zbl 0168.12301 · doi:10.1007/BF01112407
[7] Lavine, R.: Indiana Univ. Math. J.21, 643–656 (1972) · Zbl 0216.38501 · doi:10.1512/iumj.1972.21.21050
[8] Lavine, R.: J. Funct. Anal.12, 30–54 (1973) · Zbl 0246.47017 · doi:10.1016/0022-1236(73)90088-8
[9] Gel’fand, L., Levitan, B.: Am. Math. Soc. Trans.1, 253–304 (1955)
[10] Aronszajn, N.: Am. J. Math.79, 597–610 (1957) · Zbl 0079.10802 · doi:10.2307/2372564
[11] Coddington, E., Levinson, N.: Theory of ordinary differential equations. New York: McGraw-Hill 1955 · Zbl 0064.33002
[12] Halmos, P.: Measure theory. Princeton: Van Norstrand 1950 · Zbl 0040.16802
[13] Cox, D., Miller, H.: The theory of stochastic processes. London: Methuen 1965 · Zbl 0149.12902
[14] Bartle, R.: The elements of integration. New York: Wiley 1966 · Zbl 0146.28201
[15] Pearson, D.: Commun. math. Phys.40, 125–146 (1975) · doi:10.1007/BF01609395
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.