×

zbMATH — the first resource for mathematics

On the distributions corresponding to bounded operators in the Weyl quantization. (English) Zbl 0451.47059

MSC:
47L60 Algebras of unbounded operators; partial algebras of operators
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Grossmann, A.: Commun. Math. Phys.48, 191-194 (1976) · Zbl 0337.46063 · doi:10.1007/BF01617867
[2] Segal, I.E.: Math. Scand.13, 31 (1963)
[3] Pool, J.C.: J. Math. Phys.7, 66-76 (1966) · Zbl 0139.45903 · doi:10.1063/1.1704817
[4] Loupias, G.: Phys. Thesis, Univ. d’Aix, Marseille, 1966
[5] Loupias, G., Miracle-Sole, S.: Ann. Inst. H. Poincar?6, 39-58 (1967)
[6] Voros, A.: J. Funct. Anal.29, 104-132 (1978) · Zbl 0386.47031 · doi:10.1016/0022-1236(78)90049-6
[7] Berezin, F.A., ?ubin, M.A.: Coll. Math. Soc. J. Bolyai5, 21-52, Tihany (Hungary), 1970
[8] Grossmann, A.: Momentum-like constants of motion. In: Statistical mechanics and field theory (eds. R. N. Sen and C. Weil). Halstead 1972
[9] Daubechies, I., Grossmann, A.: An integral transform related to quantization. To be published in J. Math. Phys.
[10] Bargmann, V.: Comm. Pure Appl. Math.14, 187-214 (1961) · Zbl 0107.09102 · doi:10.1002/cpa.3160140303
[11] Bargmann, V.: Comm. Pure Appl. Math.20, 1-101 (1967) · Zbl 0149.09601 · doi:10.1002/cpa.3160200102
[12] Daubechies, I., Grossmann, A.: In preparation
[13] Grossmann, A., Loupias, G., Stein, E.M.: Ann. Inst. Fourier23, 343-368 (1969)
[14] Klauder, J.R.: Ann. Phys.11, 123-168 (1960) · Zbl 0098.20804 · doi:10.1016/0003-4916(60)90131-7
[15] Klauder, J.R., Sudarshan, E.C.: Fundamentals of quantum optics. New York: Benjamin 1968
[16] Daubechies, I.: Ph. D. Thesis, VUB Brussels 1980
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.