×

Non-equilibrium behaviour of a many particle process: Density profile and local equilibria. (English) Zbl 0451.60097


MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60G50 Sums of independent random variables; random walks
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Galves, A., Kipnis, C., Marchioro, C., Presutti, E.: Non-equilibrium measures which exhibit a temperature gradient: study of a model. Preprint IHES 1980 · Zbl 0465.60089
[2] Hammersley, J. M., Postulates for subadditive processes, Ann. Probability, 2, 652-680 (1974) · Zbl 0303.60044
[3] Liggett, T. M., Ergodic theorems for the asymmetric simple exclusion process, Trans. Amer. Math. Soc., 213, 237-261 (1975) · Zbl 0322.60086
[4] Liggett, T. M., Coupling the simple exclusion process, Ann. Probability, 4, 339-356 (1976) · Zbl 0339.60091
[5] Richardson, D., Random growth in a tessellation, Proc. Cambridge Phil. Soc., 70, 515-528 (1974) · Zbl 0295.62094
[6] Smythe, R. T.; Wierman, J. C., First-passage percolation on the square lattice, Lecture Notes in Mathematic 671 (1978), Berlin-Heidelberg-New York: Springer, Berlin-Heidelberg-New York · Zbl 0379.60001
[7] Saaty, Th. L., Elements of queueing theory (1961), New York-Toronto-London: McGraw-Hill, New York-Toronto-London · Zbl 0100.34203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.