×

zbMATH — the first resource for mathematics

Oscillateurs harmoniques faiblement perturbes: L’algorithme numérique des ”pas de geants”. (French) Zbl 0451.65058

MSC:
65L05 Numerical methods for initial value problems involving ordinary differential equations
70K99 Nonlinear dynamics in mechanics
65L20 Stability and convergence of numerical methods for ordinary differential equations
Citations:
Zbl 0375.65037
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] 1 M ROSEAU, Vibrations non linéaires et théorie de la stabilité, Springer-Verlag, 1966 Zbl0135.30603 MR196987 · Zbl 0135.30603
[2] 2 N BOGOLIUBOV et I MITROPOLSKI, Les méthodes asymptotiques en théorie des oscillations non linéaires, Gauthier-Villars, Pans, 1959 Zbl0247.34004 · Zbl 0247.34004
[3] 3 J KEVORKIAN, The Two Variable Expansion Procedure for the Approximate Solution of Certain Non Linear Differential Equations, Lectures Appl Math , part III, A M S , 1966 Zbl0156.16502 · Zbl 0156.16502
[4] 4 P HENRICI, Discrete Variable Methods in Ordinary Differential Equations, J Wiley, 1962 Zbl0112.34901 MR135729 · Zbl 0112.34901
[5] 5 M R FEIX A NADEAU et J P VEYRIER, Numerical Algebraic Method < The giant step method> , 4e Colloque international sur les methodes avancées de calcul en physique théorique, Saint-Maximim, 1977
[6] 6 J BOUJOT et A PHAM, C R Acad, Sc , t 286, série A, 1978, p 1063-1066 Zbl0375.65037 MR474157 · Zbl 0375.65037
[7] 7 J P VEYRIER, La méthode des pas de géants Application à l’équation de Duffing, Thèse de 3e cycle, Université d’Orléans, juin 1977
[8] 8 H KABAKOV, A Perturbation Procedure for Weakly Coupled Oscillators, Int J Nonlinear Mechanics, vol 7, 1972, p 125-137 Zbl0238.70018 · Zbl 0238.70018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.