×

zbMATH — the first resource for mathematics

Finite element approximation of electromagnetic fields in three dimensional space. (English) Zbl 0451.65087

MSC:
65Z05 Applications to the sciences
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
78A30 Electro- and magnetostatics
35Q99 Partial differential equations of mathematical physics and other areas of application
65N15 Error bounds for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agmon S., Van Nostrand Mathematical Studies (1965)
[2] Ciarlet P. G., The Finite Element Method for Elliptic Problems (1978) · Zbl 0383.65058 · doi:10.1115/1.3424474
[3] Duvaut G., Grundlehren der mathematischen Wissenschaften 219 (1976)
[4] Elben W., Numerical Treatment of Differential Equations In Applications pp 25– (1978) · doi:10.1007/BFb0067864
[5] Glowinski R., Comput. Methods Appl. Mech. Engrg. 3 pp 55– (1974) · Zbl 0288.65068 · doi:10.1016/0045-7825(74)90042-5
[6] Kress, R. 1969. ”Grundzüge einer Theorie der verallgemeinerten harmonischen Vektorfelder, Methoden und Verfahren der MathematIschen Physik, Band”. Edited by: Brosowski, B., Martensen, E. and Hochschulskripten, B. I. 49–84. Mannheim: Bibliographisches Institut. 721/721a 3
[7] Leis R., Math. Z. 106 pp 213– (1968) · doi:10.1007/BF01110135
[8] Leis R., Trends in Applications of Pure Mathematics to Mechanics 11 pp 187– (1979)
[9] Martensen E., Math. Meth. in the Appl. Sci. 1 pp 101– (1979) · Zbl 0415.35074 · doi:10.1002/mma.1670010109
[10] Mehra, L. M. 1978. ”Zur Asymptotischen Verteilung der Eigenwerte des Maxwellschen Randwertproblems”. Dissertation: Bonn. · Zbl 0411.35074
[11] Müller, Cl. 1957. ”Grundprobleme der Elektromagnetischer Schwingungen”. Heidelberg: Springer-Verlag. · Zbl 0087.21305 · doi:10.1007/978-3-642-94696-7
[12] Neittaanmäki P., Numer. Funct. Anal. and Optimiz (1957)
[13] Neittaanmäki P., Applicable Anal (1957)
[14] Neittaanmäki P., Math. Meth. in the Appl. Sci. (1957)
[15] Picard R., Proc. Roy. Soc. Edinburgh Sect. A. 86 pp 53– (1980) · Zbl 0438.65102 · doi:10.1017/S0308210500011987
[16] Rannacher R., Math. Z. 149 pp 69– (1976) · Zbl 0321.65055 · doi:10.1007/BF01301633
[17] Saranen J., Applicable Anal 10 pp 15– (1980) · Zbl 0454.65079 · doi:10.1080/00036818008839283
[18] Saranen J., Ber. Univ. Jyväskylä Math. Inst. Bericht 23 (1980)
[19] Saranen J., Ann. Acad. Sci. Fenn. Ser. A.I. Math 23 (1980)
[20] Strang G., An Analysis of the Finite Element Method (1973) · Zbl 0356.65096
[21] Weck N., J. Math. Anal. Appl. 46 pp 410– (1974) · Zbl 0281.35022 · doi:10.1016/0022-247X(74)90250-9
[22] Wendland W. L., Monographs and Studies in Mathematics (1979)
[23] Wilcox C. H., Electromagnetic Waves pp 65– (1962)
[24] Zienkiewicz, O. C. 1977. ”The Finite Element Method”. London: McGraw-Hill. · Zbl 0435.73072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.