zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global stability of population models. (English) Zbl 0451.92011

MSC:
92D25Population dynamics (general)
39A11Stability of difference equations (MSC2000)
34K20Stability theory of functional-differential equations
WorldCat.org
Full Text: DOI
References:
[1] Fisher, M. E., B. S. Goh and T. L. Vincent. 1979. ”Some Stability Conditions for Discrete-Time Single Species Models”.Bull. Math. Biol. (In press). · Zbl 0418.92014
[2] Goh, B. S. 1979.Management and Analysis of Biological Populations. New York: Elsevier. · Zbl 0497.34060
[3] Hassell, M. P. 1974. ”Density Dependence in Single Species Populations.”J. Anim. Ecol.,44, 283--296. · doi:10.2307/3863
[4] LaSalle, J. P. 1976.The Stability of Dynamical Systems. Philadelphia: SIAM. · Zbl 0364.93002
[5] May, R. M. 1974. ”Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and Chaos.”Science,186, 645--647. · doi:10.1126/science.186.4164.645
[6] Moran, P. A. P. 1950. ”Some Remarks on Animal Population Dynamics.”Biometrics,6, 250--258. · doi:10.2307/3001822
[7] Pennycuick C. J., R. M. Compton and L. Beckingham. 1968. ”A Computer Model for Simulating the Growth of a Population, or of Two Interacting Populations.”J. theor. Biol.,18, 316--329. · doi:10.1016/0022-5193(68)90081-7
[8] Ricker, W. E. 1954. ”Stock and Recruitment.”J. Fish. Res. Bd. Can.,11, 559--623. · doi:10.1139/f54-039
[9] Smith, J. M. 1968.Mathematical Ideas in Biology. Cambridge University Press.
[10] -- 1974.Models in Ecology. Cambridge University Press, Cambridge, U.K. · Zbl 1066.92504
[11] Utida, S. 1957. ”Population Fluctuation, an Experimental and Theoretical Approach.”Cold Spring Harbor Symp. Quant. Biol.,22, 139--151. · doi:10.1101/SQB.1957.022.01.016