zbMATH — the first resource for mathematics

Dissipative dynamical systems: basic input-output and state properties. (English) Zbl 0451.93007

93A10 General systems
93B05 Controllability
93B07 Observability
Full Text: DOI
[1] Wolovich, W.A., Linear multivariable systems, (1974), Springer New York · Zbl 0291.93002
[2] Brockett, R.W., Nonlinear systems and differential geometry, Proc. IEEE, Vol. 64, 61-72, (Jan. 1976)
[3] Bruni, C.; DiPillo, G.; Koch, G., Bilinear systems: an appealing class of ‘nearly linear’ systems in theory and applications, IEEE trans. autom. control, Vol. AC-19, 334-348, (Aug. 1974)
[4] Desoer, C.A.; Vidyasagar, M., Feedback systems: input-output properties, (1975), Academic Press New York · Zbl 0327.93009
[5] Hahn, W., Stability of motion, (1967), Springer Berlin · Zbl 0189.38503
[6] LaSalle, J.P., The stability of dynamical systems, SIAM, (1976) · Zbl 0364.93002
[7] Willems, J.C., Dissipative dynamical systems, part I: general theory; part II: linear systems with quadratic supply rates, Archive for rational mechanics and analysis, Vol. 45, 321-393, (1972)
[8] Kalman, R.E., Lyapunov functions for the problem of Lur’e in automatic control, Proc. natn. acad. sci., U.S.A., Vol. 49, 201-205, (Feb. 1963)
[9] Yakubovich, V.A.; Yakubovich, V.A., Absolute stability of nonlinear control in critical cases—parts I and II, Autom. remote control, Autom. remote control, Vol. 24, 655-688, (1963) · Zbl 0137.28901
[10] Anderson, B.D.O.; Vongpanitlerd, S., Network analysis and synthesis, (1973), Prentice-Hall Englewood Cliffs, NJ
[11] Baker, R.A.; Bergen, A.R., Lyapunov stability and Lyapunov functions of infinite dimensional systems, IEEE trans. autom. control, Vol. AC-14, 325-334, (Aug. 1969)
[12] Estrada, R.F.; Desoer, C.A., Passivity and stability with a state representation, Int. J. control, Vol. 13, 1-26, (1971) · Zbl 0215.30504
[13] Willems, J.C., The generation of Lyapunov functions for input-output stable systems, SIAM J. control, Vol. 9, 105-133, (Feb. 1971)
[14] Willems, J.C., Qualitative behaviour of interconnected systems, Ann. systems res., Vol. 3, 61-80, (1973)
[15] Moylan, P.J., Implications of passivity in a class of nonlinear systems, IEEE trans. autom. control, Vol. AC-19, 373-381, (Aug. 1974)
[16] Hill, D.J.; Moylan, P.J., The stability of nonlinear dissipative systems, IEEE trans. autom. control, Vol. AC-21, 708-711, (Oct. 1976)
[17] Hill, D.J.; Moylan, P.J., Stability results for nonlinear feedback systems, Automatica, Vol. 13, 377-382, (July 1977)
[18] Moylan, P.J.; Hill, D.J., Stability criteria for large-scale systems, IEEE trans. autom. control, Vol. AC-23, 143-149, (Apr. 1978)
[19] Hill, D.J.; Moylan, P.J., A general result on the instability of feedback systems, IEEE international symposium on circuits and systems, (1978), New York, May 1978 · Zbl 0429.93053
[20] Hill, D.J.; Moylan, P.J., Cyclo-dissipativeness, dissipativeness and losslessness for nonlinear dynamical systems, Tech. report no. EE-7526, (Nov. 1975), Department of Electrical Engineering, University of Newcastle New South Wales, Australia
[21] Willems, J.C., Mechanisms for the stability and instability in feedback systems, Proc. IEEE, Vol. 64, 24-35, (Jan. 1976)
[22] Porter, W.A.; Zahm, C.L., Basic concepts in system theory, SEL tech. rep. no. 44, (Sept. 1972), University of Michigan
[23] Lang, S., Analysis II, (1969), Addison Wesley Reading, Ma
[24] Kalman, R.E.; Falb, P.L.; Arbib, M.A., Topics in mathematical system theory, (1969), McGraw-Hill New York · Zbl 0231.49001
[25] Desoer, C.A.; Kuh, E.S., Basic circuit theory, (1969), McGraw-Hill New York
[26] Willems, J.C., Least squares stationary optimal control and the algebraic Riccati equation, IEEE trans. autom. control, Vol. AC-16, 621-634, (Dec. 1971)
[27] Willems, J.L., Stability theory of dynamical systems, (1970), Nelson, London · Zbl 0222.93010
[28] Anderson, B.D.O.; Moylan, P.J., Structure result for nonlinear passive systems, International symposium on operator theory of networks and systems, (Aug. 1975), Montreal, Canada
[29] Anderson, B.D.O., A system theory criterion for positive real matrices, SIAM J. control, Vol. 5, 171-182, (May 1967)
[30] Anderson, B.D.O.; Moylan, P.J., Synthesis of linear time-varying passive networks, IEEE trans. circuit and systems, Vol. CAS-21, 678-687, (Sept. 1974)
[31] Balakrishnan, A.V., On the controllability of a nonlinear system, Proc. natn. acad. sci., U.S.A., Vol. 55, 465-468, (1966) · Zbl 0143.32003
[32] Jacobson, D.H., Extensions of linear-quadratic control, optimization and matrix theory, (1977), Academic Press London · Zbl 0359.90085
[33] Chua, L.O.; Green, D.N., A qualitative analysis of the behaviour of dynamic nonlinear networks: stability of autonomous networks, IEEE trans. circuits syst., Vol. CAS-23, 355-379, (June 1976)
[34] Matsumoto, T., Eventually passive nonlinear networks, IEEE trans. circuits syst., Vol. CAS-24, 261-269, (May 1977)
[35] Wyatt, J.L.; Chua, L.O.; Gannett, J.W.; Goknar, C.; Green, D.N., Foundations of nonlinear network theory—part I: passivity, (Aug. 1978), College of Engineering, University of California Berkeley, CA, Memo UCB/ERL M78/76
[36] Chua, L.O., Introduction to nonlinear network theory, (1969), McGraw-Hill New York · Zbl 0221.94039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.